Skip to main content

Advertisement

Log in

Hierarchical multifunctional graphene oxide cancer nanotheranostics agent for synchronous switchable fluorescence imaging and chemical therapy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanotheranostics platform was synthesized based on PEGylated graphene oxide–gold nanoparticles and specified with aptamer toward the MUC-1-positive tumor cells. Subsequently, it was loaded with doxorubicin, used for non-invasive fluorescence imaging and therapy of breast and colon tumors. The success of the nano-coating at each synthesis step was characterized through FTIR, XRD, TGA, FE-SEM, EDAX, Zeta-potential, and fluorescence spectroscopy. Besides, the ability of the designed platform in targeted imaging, drug delivery, and in vitro therapy were evaluated using fluorescence microscopy and flow cytometry. The selected aptamer acts as a quencher, resulting in an “on/off” fluorescence biosensor. When the aptamer specifically binds to the MUC-1 receptor, its double strands separate, leading to the drug release and the recovery of the fluorescence of (“On” state) at the excitation wavelength of 300 nm. Based on cell toxicity results, this platform has more toxicity toward the MUC-1-positive tumor cells (HT-29 and MCF-7) compared  to MUC-1-negative cells (Hep-G2), representing its selective performance. Thus, this nano-platform can be introduced as a multifunctional cancer nanotheranostics system for tracing particular biomarkers, non-invasive imaging, and targeted chemotherapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mendes LP, Lima EM, Torchilin VP (2018) Targeted nanotheranostics for selective drug delivery in cancer. In: Handbook of nanomaterials for cancer theranostics. Elsevier. p. 245–277

  2. Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR (2018) Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine 13:8013–8024

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zarepour A, Zarrabi A, Larsen KL (2019) Fabricating Β-cyclodextrin based pH-responsive nanotheranostics as a programmable polymeric nanocapsule for simultaneous diagnosis and therapy. Int J Nanomedicine 14:7017–7038

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Miyake M, Sugano K, Sugino H, Imai K, Matsumoto E, Maeda K, Fukuzono S, Ichikawa H, Kawashima K, Hirabayashi K, Kodama T, Fujimoto H, Kakizoe T, Kanai Y, Fujimoto K, Hirao Y (2010) Fibroblast growth factor receptor 3 mutation in voided urine is a useful diagnostic marker and significant indicator of tumor recurrence in non-muscle invasive bladder cancer. Cancer Sci 101(1):250–258

    CAS  PubMed  Google Scholar 

  5. Miao T et al (2019) Nanotheranostics-based imaging for cancer treatment monitoring, in nanotheranostics for cancer applications. Springer, pp 395–428

  6. Bidram E, Esmaeili Y, Ranji-Burachaloo H, al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE (2019) A concise review on cancer treatment methods and delivery systems. Journal of Drug Delivery Science and Technology 54:101350

    CAS  Google Scholar 

  7. Wang Y, Wang S, Lu C, Yang X (2018) Three kinds of DNA-directed nanoclusters cooperating with graphene oxide for assaying mucin 1, carcinoembryonic antigen and cancer antigen 125. Sensors Actuators B Chem 262:9–16

    Google Scholar 

  8. Nielsen LJ, Olsen LF, Ozalp VC (2010) Aptamers embedded in polyacrylamide nanoparticles: a tool for in vivo metabolite sensing. ACS Nano 4(8):4361–4370

    CAS  PubMed  Google Scholar 

  9. Shoghi E, Mirahmadi-Zare SZ, Ghasemi R, Asghari M, Poorebrahim M, Nasr-Esfahani MH (2018) Nanosized aptameric cavities imprinted on the surface of magnetic nanoparticles for high-throughput protein recognition. Microchim Acta 185(4):241

    Google Scholar 

  10. Zhou J, Rossi J (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 16(3):181–202

    CAS  PubMed  Google Scholar 

  11. Miao Q, Pu K (2018) Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv Mater 30(49):1801778

    Google Scholar 

  12. Daniel A, Oron D, Silberberg Y (2019) Noninvasive linear fluorescence imaging through scattering media via wavefront shaping. arXiv preprint arXiv:1904.02509

  13. Diao S, Blackburn JL, Hong G, Antaris AL, Chang J, Wu JZ, Zhang B, Cheng K, Kuo CJ, Dai H (2015) Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew Chem Int Ed 54(49):14758–14762

    CAS  Google Scholar 

  14. Owens EA, Henary M, el Fakhri G, Choi HS (2016) Tissue-specific near-infrared fluorescence imaging. Acc Chem Res 49(9):1731–1740

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li C, Wang Q (2018) Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window. ACS Nano 12(10):9654–9659

    CAS  PubMed  Google Scholar 

  16. Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG, Bruns OT (2018) Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci 115(17):4465–4470

    CAS  PubMed  Google Scholar 

  17. Li B, Lu L, Zhao M, Lei Z, Zhang F (2018) An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew Chem Int Ed 57(25):7483–7487

    CAS  Google Scholar 

  18. Shcherbakova DM, Stepanenko OV, Turoverov KK, Verkhusha VV (2018) Near-infrared fluorescent proteins: multiplexing and optogenetics across scales. Trends Biotechnol 36:1230–1243

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinić I, Eliseeva SV, Petoud S (2017) Near-infrared emitting probes for biological imaging: organic fluorophores, quantum dots, fluorescent proteins, lanthanide (III) complexes and nanomaterials. J Lumin 189:19–43

    Google Scholar 

  20. Kim D, Kim J, Park YI, Lee N, Hyeon T (2018) Recent development of inorganic nanoparticles for biomedical imaging. ACS central science 4(3):324–336

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44(14):4792–4834

    CAS  PubMed  Google Scholar 

  22. Bruns OT, Bischof TS, Harris DK, Franke D, Shi Y, Riedemann L, Bartelt A, Jaworski FB, Carr JA, Rowlands CJ, Wilson MWB, Chen O, Wei H, Hwang GW, Montana DM, Coropceanu I, Achorn OB, Kloepper J, Heeren J, So PTC, Fukumura D, Jensen KF, Jain RK, Bawendi MG (2017) Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nature biomedical engineering 1(4):0056

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Du J et al (2019) Thiol-activated fluorescent probe for sensitive detection and imaging of proteins. Sensors Actuators B Chem 287:118–123

    CAS  Google Scholar 

  24. Qian X, Xu Z (2015) Fluorescence imaging of metal ions implicated in diseases. Chem Soc Rev 44(14):4487–4493

    CAS  PubMed  Google Scholar 

  25. Dong J, Wang K, Sun L, Sun B, Yang M, Chen H, Wang Y, Sun J, Dong L (2018) Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sensors Actuators B Chem 256:616–623

    CAS  Google Scholar 

  26. de Lazaro I, et al (2018) Graphene oxide as 2D platform for complexation and intracellular delivery of siRNA. bioRxiv. 486522

  27. Muñoz, R., et al., Graphene oxide for drug delivery and cancer therapy. In: Nanostructured polymer composites for biomedical applications. 2019, Elsevier. p. 447–488

  28. Islami M, Zarrabi A, Tada S, Kawamoto M, Isoshima T, Ito Y (2018) Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. Int J Nanomedicine 13:6059–6071

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Brennan JD, Liu M (2019) Reduced graphene oxide-based biosensors. Google Patents

  30. Zeng L, et al (2018) Graphene oxide-based biosensors. In: Graphene oxide—applications and opportunities. IntechOpen

  31. Yang J, Zhang Z, Yan G (2018) An aptamer-mediated CdSe/ZnS QDs@ graphene oxide composite fluorescent probe for specific detection of insulin. Sensors Actuators B Chem 255:2339–2346

    CAS  Google Scholar 

  32. Shareena TPD et al (2018) A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-micro letters 10(3):53

    Google Scholar 

  33. Oh HJ et al (2018) Graphene-oxide quenching-based molecular beacon imaging for exosome-mediated transfer of neurogenic miRNA on microfluidic platform. Journal of Extracellular Vesicles 7:261–261

    Google Scholar 

  34. Srivastava S, Senguttuvan TD, Gupta BK (2018) Highly efficient fluorescence quenching with chemically exfoliated reduced graphene oxide. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 36(4):04G104

    Google Scholar 

  35. Ye H, Lu Q, Duan N, Wang Z (2019) GO-amplified fluorescence polarization assay for high-sensitivity detection of aflatoxin B 1 with low dosage aptamer probe. Anal Bioanal Chem 411(5):1107–1115

    CAS  PubMed  Google Scholar 

  36. Zheng P, Wu N (2017) Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chemistry–An Asian Journal 12(18):2343–2353

    CAS  Google Scholar 

  37. He L, Li J, Xin JH (2015) A novel graphene oxide-based fluorescent nanosensor for selective detection of Fe3+ with a wide linear concentration and its application in logic gate. Biosens Bioelectron 70:69–73

    CAS  PubMed  Google Scholar 

  38. Chien CT, Li SS, Lai WJ, Yeh YC, Chen HA, Chen IS, Chen LC, Chen KH, Nemoto T, Isoda S, Chen M, Fujita T, Eda G, Yamaguchi H, Chhowalla M, Chen CW (2012) Tunable photoluminescence from graphene oxide. Angew Chem Int Ed 51(27):6662–6666

    CAS  Google Scholar 

  39. Shukla S, Saxena S (2011) Spectroscopic investigation of confinement effects on optical properties of graphene oxide. Appl Phys Lett 98(7):073104

    Google Scholar 

  40. Bidram E, Sulistio A, Amini A, Fu Q, Qiao GG, Stewart A, Dunstan DE (2016) Fractionation of graphene oxide single nano-sheets in water-glycerol solutions using gradient centrifugation. Carbon 103:363–371

    CAS  Google Scholar 

  41. Sivakumar PM, et al (2019) Polymer-graphene nanoassemblies and their applications in cancer theranostics. Anti-cancer Agents in Medicinal Chemistry

  42. Luo N, Weber JK, Wang S, Luan B, Yue H, Xi X, du J, Yang Z, Wei W, Zhou R, Ma G (2017) PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat Commun 8:14537

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu Y, Ali MRK, Chen K, Fang N, el-Sayed MA (2019) Gold nanoparticles in biological optical imaging. Nano Today 24:120–140

    CAS  Google Scholar 

  44. Melaine F, Roupioz Y, Buhot A (2015) Gold nanoparticles surface plasmon resonance enhanced signal for the detection of small molecules on split-aptamer microarrays (small molecules detection from split-aptamers). Microarrays 4(1):41–52

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fantoni A, et al (2019) Plasmonic properties of gold nanospheres coupled to reduced graphene oxide for biosensing applications. In: 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG). IEEE

  46. Liu M (2017) Plasmonic nanoparticles application in biosensor and bioimaging. Tissue Engineering And Nanotheranostics 10:151

    CAS  Google Scholar 

  47. Bidram E, Sulistio A, Cho HJ, Amini A, Harris T, Zarrabi A, Qiao G, Stewart A, Dunstan DE (2018) Targeted graphene oxide networks: cytotoxicity and synergy with anticancer agents. ACS Appl Mater Interfaces 10(50):43523–43532

    CAS  PubMed  Google Scholar 

  48. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257(3–4):638–665

    CAS  Google Scholar 

  49. Binaymotlagh R, Hajareh Haghighi F, Aboutalebi F, Mirahmadi-Zare SZ, Hadadzadeh H, Nasr-Esfahani MH (2019) Selective chemotherapy and imaging of colorectal and breast cancer cells by a modified MUC-1 aptamer conjugated to a poly(ethylene glycol)-dimethacrylate coated Fe3O4–AuNCs nanocomposite. New J Chem 43(1):238–248

    CAS  Google Scholar 

  50. Patel AS, Juneja S, Kanaujia PK, Maurya V, Prakash GV, Chakraborti A, Bhattacharya J (2018) Gold nanoflowers as efficient hosts for SERS based sensing and bio-imaging. Nano-Structures & Nano-Objects 16:329–336

    CAS  Google Scholar 

  51. Jung JH et al (2010) A graphene oxide based immuno-biosensor for pathogen detection. Angew Chem 122(33):5844–5847

    Google Scholar 

  52. Zhang S, Xiong P, Yang X, Wang X (2011) Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability. Nanoscale 3(5):2169–2174

    CAS  PubMed  Google Scholar 

  53. Wang C, Feng L, Yang H, Xin G, Li W, Zheng J, Tian W, Li X (2012) Graphene oxide stabilized polyethylene glycol for heat storage. Phys Chem Chem Phys 14(38):13233–13238

    CAS  PubMed  Google Scholar 

  54. Bikhof Torbati M, Ebrahimian M, Yousefi M, Shaabanzadeh M (2017) GO-PEG as a drug nanocarrier and its antiproliferative effect on human cervical cancer cell line. Artificial cells, nanomedicine, and biotechnology 45(3):568–573

    CAS  PubMed  Google Scholar 

  55. Li M, Wang C (2019) Preparation and characterization of GO/PEG photo-thermal conversion form-stable composite phase change materials. Renew Energy 141:1005–1012

    CAS  Google Scholar 

  56. Pham TA, Kumar NA, Jeong YT (2010) Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles. Synth Met 160(17–18):2028–2036

    CAS  Google Scholar 

  57. Jafarizad A, Taghizadehgh-Alehjougi A, Eskandani M, Hatamzadeh M, Abbasian M, Mohammad-Rezaei R, Mohammadzadeh M, Toğar B, Jaymand M (2018) PEGylated graphene oxide/Fe3O4 nanocomposite: synthesis, characterization, and evaluation of its performance as de novo drug delivery nanosystem. Biomed Mater Eng 29(2):177–190

    CAS  PubMed  Google Scholar 

  58. Hareesh K, Williams JF, Dhole NA, Kodam KM, Bhoraskar VN, Dhole SD (2016) Bio-green synthesis of Ag–GO, Au–GO and Ag–Au–GO nanocomposites using Azadirachta indica: its application in SERS and cell viability. Materials Research Express 3(7):075010

    Google Scholar 

  59. Kokunov YV, Kovalev VV, Gorbunova YE, Razgonyaeva GA (2015) Supramolecular ensemble of a coordination compound of CdI 2 with 2-amino-4-methylpyrimidine. Russ J Coord Chem 41(12):787–791

    CAS  Google Scholar 

  60. Mello MLS, Vidal B (2012) Changes in the infrared microspectroscopic characteristics of DNA caused by cationic elements, different base richness and single-stranded form. PLoS One 7(8):e43169

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Feng L, Li K, Shi X, Gao M, Liu J, Liu Z (2014) Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo-and photothermal therapy overcoming drug resistance. Advanced healthcare materials 3(8):1261–1271

    CAS  PubMed  Google Scholar 

  62. Wang X, Han Q, Yu N, Li J, Yang L, Yang R, Wang C (2015) Aptamer-conjugated graphene oxide–gold nanocomposites for targeted chemo-photothermal therapy of cancer cells. J Mater Chem B 3(19):4036–4042

    CAS  PubMed  Google Scholar 

  63. Jibin, K., et al., Optically controlled hybrid metamaterial of plasmonic spiky gold inbuilt graphene sheets for bimodal imaging guided multimodal therapy. Biomaterials Science, 2020

  64. Yang Y, Wang S, Wang C, Tian C, Shen Y, Zhu M (2019) Engineered targeted hyaluronic acid-glutathione-stabilized gold nanoclusters/graphene oxide-5-fluorouracil as a smart theranostic platform for stimulus-controlled fluorescence imaging-assisted synergetic chemo/phototherapy. Chemistry–An Asian Journal 14(9):1418–1423

    CAS  Google Scholar 

  65. Bahreyni A, Yazdian-Robati R, Hashemitabar S, Ramezani M, Ramezani P, Abnous K, Taghdisi SM (2017) A new chemotherapy agent-free theranostic system composed of graphene oxide nano-complex and aptamers for treatment of cancer cells. Int J Pharm 526(1–2):391–399

    PubMed  Google Scholar 

  66. Usman MS, Hussein MZ, Fakurazi S, Masarudin MJ, Ahmad Saad FF (2018) A bimodal theranostic nanodelivery system based on [graphene oxide-chlorogenic acid-gadolinium/gold] nanoparticles. PLoS One 13(7):e0200760

    PubMed  PubMed Central  Google Scholar 

  67. Pan J, Yang Y, Fang W, Liu W, le K, Xu D, Li X (2018) Fluorescent phthalocyanine–graphene conjugate with enhanced NIR absorbance for imaging and multi-modality therapy. ACS Applied Nano Materials 1(6):2785–2795

    CAS  Google Scholar 

  68. Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, Ghavami M, Shanehsazzadeh S, Dinarvand R (2016) Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B: Biointerfaces 143:224–232

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Zarrabi or Seyede Zohreh Mirahmadi-Zare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• GO@PEG/Au/Apt/DOX as a new type of smart theranostic agent was fabricated.

• This new nanosystem has an “on/off” fluorescence biosensing ability.

• It also has selective performance against MUC-1-positive tumor cells.

• It is a nanotheranostics system for tracing particular biomarkers, non-invasive imaging, and targeted chemotherapy.

Electronic supplementary material

ESM 1

(DOCX 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, Y., Zarrabi, A., Mirahmadi-Zare, S.Z. et al. Hierarchical multifunctional graphene oxide cancer nanotheranostics agent for synchronous switchable fluorescence imaging and chemical therapy. Microchim Acta 187, 553 (2020). https://doi.org/10.1007/s00604-020-04490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04490-6

Keywords

Navigation