Skip to main content
Log in

Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel magnetic dual-template molecularly imprinted polymer (DMIP) was prepared with methyl-parathion and quinalphos as templates. For comparison, a series of single-template polymers with only methyl-parathion (MPMIP) or quinalphos (QPMIP) as template as well as a non-imprinted polymer (NIP) in the absence of the template, were synthesized using the same procedure of DMIP. The obtained MIPs were characterized by scanning electron microscopy(SEM), Fourier transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM), and X-ray diffraction (XRD). The properties including kinetic effect, thermodynamic effect, selectivity, and reusability of MIPs were investigated . Only DMIP possessed high affinity and good recognition for all twelve OPPs including quinalphos, isazophos, chlorpyrifos-methyl, chlorpyrifos, methidathion, triazophos, profenofos, fenthion, fenitrothion, methyl-parathion, parathion, and paraoxon in comparison to MPMIP, QPMIP, or NIP. Moreover, DMIP was used as magnetic solid phase extraction (MSPE) sorbent for the pre-concentration of twelve OPPs in cabbage samples. The developed DMIP-MSPE-GC-MS method showed high sensitivity, low LODs (1.62–13.9 ng/g), fast adsorption equilibrium (10 min), and acceptable spiked recoveries (81.5–113.4%) with relative standard deviations (RSD) in the range 0.05–7.0% (n = 3). The calibration plots were linear in the range 10–800 ng/mL with coefficients of determination (R2) better 0.99 for all twelve compounds. These results suggest that the DMIP is applicable for rapid determination and high throughput analysis of multi-pesticide residues.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

OPPs:

Organophosphorus pesticides

DMIP:

Dual-template molecularly imprinted polymer

MPMIP:

Methyl-parathion as template molecularly imprinted polymer

QPMIP:

Quinalphos as template molecularly imprinted polymer

NIP:

Non-imprinted polymer

MSPE:

Magnetic solid phase extraction

References

  1. Shu HC, Chung SW (2017) Analysis of organophosphorous pesticides based on housefly acetylcholinesterase using sequential injection analysis. J Chin Chem Soc-Taip 12:1460–1466. https://doi.org/10.1002/jccs.201700248

    Article  CAS  Google Scholar 

  2. Ismail AA, Wang K, Olson JR, Bonner MR, Hendy O, Rohlman DS (2017) The impact of repeated organophosphorus pesticide exposure on biomarkers and neurobehavioral outcomes among adolescent pesticide applicators. J Toxicol Env Heal A 80:1–13. https://doi.org/10.1080/15287394.2017.1362612

    Article  CAS  Google Scholar 

  3. Butler-Dawson J, Galvin K, Thorne PS (2016) Organophosphorus pesticide exposure and neurobehavioral performance in Latino children living in an orchard community. Neurotoxicology 53:165–172. https://doi.org/10.1016/j.neuro.2016.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Curl CL, Beresford SA, Fenske RA, Fitzpatrick AL, Lu C, Nettleton JA, Kaufman JD (2015) Estimating pesticide exposure from dietary intake and organic food choices: the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health Perspect 123:475–483. https://doi.org/10.1289/ehp.1408197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ledda C, Fiore M, Santarelli L, Bracci M, Mascali G, D'Agati MG, Busà A, Ferrante M (2015) Gestational hypertension and organophosphorus pesticide exposure: a cross-sectional study. Biomed Res Int 2015:1–5. https://doi.org/10.1155/2015/280891

    Article  CAS  Google Scholar 

  6. Mullins RJ, Xu S, Pereira EF, Pescrille JD, Todd SW, Mamczarz J (2015) Prenatal exposure of guinea pigs to the organophosphorus pesticide Chlorpyrifos disrupts the structural and functional integrity of the brain. Neurotoxicology 48:9–20. https://doi.org/10.1016/j.neuro.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Narayan S, Sinsheimer JS, Paul KC, Liew Z, Cockburn M, Bronstein JM, mRitz B (2015) Genetic variability in ABCB1, occupational pesticide exposure, and Parkinson’s disease. Environ Res 143:98–106. https://doi.org/10.1016/j.envres.2015.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Engel SM, Bradman A, Wolff MS, Rauh VA, Harley KG, Yang JH, Hoepner LA, Eskenazi B (2016) Prenatal organophosphorus pesticide exposure and child neurodevelopment at 24 months: an analysis of four birth cohorts. Environ Health Perspect 124:822–830. https://doi.org/10.1289/ehp.1409474

    Article  CAS  PubMed  Google Scholar 

  9. Chen XP, Wang TT, Wu XZ, Wang DW, Chao YS (2016) An in vivo study in mice: mother’s gestational exposure to organophosphorus pesticide retards the division and migration process of neural progenitors in the fetal developing brain. Toxicol Res 5:1359–1370. https://doi.org/10.1039/c5tx00282f

    Article  CAS  Google Scholar 

  10. Lambropoulou DA (2003) Headspace solid-phase microextraction in combination with gas chromatography-mass spectrometry for the rapid screening of organophosphorus insecticide residues in strawberries and cherries. J Chromatogr A 993:197–203. https://doi.org/10.1016/S0021-9673(03)00397-2

    Article  CAS  PubMed  Google Scholar 

  11. Fu L, Liu X, Hu J, Zhao X, Wang H, Wang X (2009) Application of dispersive liquid-liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples. Anal Chim Acta 632:289–295. https://doi.org/10.1016/j.aca.2008.11.020

    Article  CAS  PubMed  Google Scholar 

  12. Chung SW, Chan BT (2010) Validation and use of a fast sample preparation method and liquid chromatography-tandem mass spectrometry in analysis of ultra-trace levels of 98 organophosphorus pesticide and carbamate residues in a total diet study involving diversified food types. J Chromatogr A 1217:4815–4824. https://doi.org/10.1016/j.chroma.2010.05.043

    Article  CAS  PubMed  Google Scholar 

  13. Albero B, Sánchez-Brunete C, Tadeo JL (2003) Determination of organophosphorus pesticides in fruit juices by matrix solid-phase dispersion and gas chromatography. J Agr Food Chem 51:6915–6921. https://doi.org/10.1021/jf030414m

    Article  CAS  Google Scholar 

  14. Hu C, He M, Chen B, Hu B (2013) A sol-gel polydimethylsiloxane/ polythiophene coated stir bar sorptive extraction combined with gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples. J Chromatogr A 1275:25–31. https://doi.org/10.1016/j.chroma.2012.12.036

    Article  CAS  PubMed  Google Scholar 

  15. Ravelo-Pérez LM, Hernández-Borges J, Rodríguez-Delgado MÁ (2008) Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices. J Chromatogr A 1211:33–42. https://doi.org/10.1016/j.chroma.2008.09.084

    Article  CAS  PubMed  Google Scholar 

  16. Yan A (2012) Simultaneous determination of organophosphorus, organochlorine, pyrethriod and carbamate pesticides in Radix astragali by microwave-assisted extraction/dispersive-solid phase extraction coupled with GC-MS. Talanta 97:131–141. https://doi.org/10.1016/j.talanta.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  17. Su PG, Huang SD (1999) Determination of organophosphorus pesticides in water by solid-phase microextraction. Talanta 49:393–402. https://doi.org/10.1016/S0039-9140(99)00002-8

    Article  CAS  PubMed  Google Scholar 

  18. Vreuls JJ, Swen RJ, Goudriaan VP, Kerkhoff MA, Jongenotter GA, Brinkman UA (1996) Automated on-line gel permeation chromatography gas chromatography for the determination of organophosphorus pesticides in olive oil. J Chromatogr A 750:275–286. https://doi.org/10.1016/0021-9673(96)00581-X

    Article  CAS  PubMed  Google Scholar 

  19. Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew Chem Int Ed Engl 17:1812–1832. https://doi.org/10.1002/anie.199518121

    Article  Google Scholar 

  20. Xin JH, Qiao XG, Xu ZX, Zhou J (2013) Molecularly imprinted polymers as sorbent for solid-phase extraction coupling to gas chromatography for the simultaneous determination of Trichlorfon and Monocrotophos residues in vegetables. Food Anal Methods 6:274–281. https://doi.org/10.1007/s12161-012-9432-4

    Article  Google Scholar 

  21. Ma JK, Huang XC, Wei SL (2018) Preparation and application of chlorpyrifos molecularly imprinted solid-phase microextraction probes for the residual determination of organophosphorous pesticides in fresh and dry foods. J Sep Sci 41:3152–3162. https://doi.org/10.1002/jssc.201800385

    Article  CAS  PubMed  Google Scholar 

  22. Li D, Zhang X, Kong F, Qiao X, Xu Z (2017) Molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography for the determination of trace Trichlorfon and Monocrotophos residues in fruits. Food Anal Methods 10:1284–1292. https://doi.org/10.1007/s12161-016-0687-z

    Article  Google Scholar 

  23. Xu SF, Li JH, Chen LX (2011) Molecularly imprinted core-shell nano particles for determinationfo trace atrazine by reversible addition-fragmentation chain transfer surface imprinting. J Mater Chem 21:4346–4351. https://doi.org/10.1039/C0JM03593A

    Article  CAS  Google Scholar 

  24. Zhang J, Ni YL, Wang LL, Ma JQ, Zhang ZQ (2015) Selective solid-phase extraction of artificial chemicals from milk samples using multiple-template surface molecularly imprinted polymers. Biomed Chromatogr 29:1267–1273. https://doi.org/10.1002/bmc.3416

    Article  CAS  PubMed  Google Scholar 

  25. Yang K, Wang GN, Liu HZ, Liu J, Wang JP (2017) Preparation of dual-template molecularly imprinted polymer coated stir bar based on computational simulation for detection of fluoroquinolones in meat. J Chromatogr B 1046:65–72. https://doi.org/10.1016/j.jchromb.2017.01.033

    Article  CAS  Google Scholar 

  26. Ghaeni FA, Karimi G, Mohsenzadeh MS, Nazarzadeh M, Motamedshariaty VS, Mohajeri SA (2018) Preparation of dual-template molecularly imprinted nanoparticles for organophosphate pesticides and their application as selective sorbents for water treatment. Sep Sci Technol 53:2517–2526. https://doi.org/10.1080/01496395.2018.1461112

    Article  CAS  Google Scholar 

  27. Xu Z, Yang Z, Liu Z (2014) Development of dual-templates molecularly imprinted stir bar sorptive extraction and its application for the analysis of environmental estrogens in water and plastic samples. J Cheomatogr A 1358:52–59. https://doi.org/10.1016/j.chroma.2014.06.093

    Article  CAS  Google Scholar 

  28. Yi P, Geng N, Ju X, Jian P (2017) Dual-dummy-template molecularly imprinted polymer combining ultra performance liquid chromatography for determination of fluoroquinolones and sulfonamides in pork and chicken muscle. Food Control 82:233–242. https://doi.org/10.1016/j.foodcont.2017.07.002

    Article  CAS  Google Scholar 

  29. He H, Gu X, Shi L, Hong J, Zhang H, Gao Y (2015) Molecularly imprinted polymers based on SBA-15 for selective solid-phase extraction of baicalein from plasma samples. Anal Bioanal Chem 407:509–519. https://doi.org/10.1007/s00216-014-8285-7

    Article  CAS  PubMed  Google Scholar 

  30. Yang B, Lv S, Chen F, Liu C, Cai C, Chen C (2016) A resonance light scattering sensor based on bioinspired molecularly imprinted polymers for selective detection of papain at trace levels. Anal Chim Acta 912:125–132. https://doi.org/10.1016/j.aca.2016.01.030

    Article  CAS  PubMed  Google Scholar 

  31. Bali BP, Jauhari D, Verma A (2014) A dual-ion imprinted polymer embedded in sol-gel matrix for the ultra trace simultaneous analysis of cadmium and copper. Talanta 120:398–407. https://doi.org/10.1016/j.talanta.2013.12.036

    Article  CAS  Google Scholar 

  32. Liu M, Li X, Li J, Wu Z, Wang F, Liu L (2017) Selective separation and determination of glucocorticoids in cosmetics using dual-template magnetic molecularly imprinted polymers and HPLC. J Colloid Interf Sci 504:124–133. https://doi.org/10.1016/j.jcis.2017.05.041

    Article  CAS  Google Scholar 

  33. Gao RX, Zhao SQ, Hao Y, Zhang LL (2015) Synthesis of magnetic dual-template molecularly imprinted nanoparticles for the specific removal of two high-abundance proteins simultaneously in blood plasma. J Sep Sci 38:3914–3920. https://doi.org/10.1002/jssc.201500882

    Article  CAS  PubMed  Google Scholar 

  34. Prasad BB, Jauhari D (2015) Double-ion imprinted polymer @magnetic nanoparticles modified screen printed carbon electrode for simultaneous analysis of cerium and gadolinium ions. Anal Chim Acta 875:83–91. https://doi.org/10.1016/j.aca.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  35. Wei M, Yan X, Liu S, Liu Y (2018) Preparation and evaluation of superparamagnetic core-shell dummy molecularly imprinted polymer for recognition and extraction of organophosphorus pesticide. J Mater Sci 53:4897–4912. https://doi.org/10.1007/s10853-017-1935-3

    Article  CAS  Google Scholar 

  36. Miao SS, Wu MS, Zuo HG, Jiang C, Jin SF, Lu YC, Yang H (2015) Core-shell magnetic molecularly imprinted polymers as sorbent for sulfonylurea herbicides residues. J Agric Food Chem 63:3634–3645. https://doi.org/10.1021/jf506239b

    Article  CAS  PubMed  Google Scholar 

  37. Francisco GC, León CA, Lucena R, Soledad C, Miguel V (2013) Ionic liquid coated magnetic nanoparticles for the gas chromatography/mass spectrometric determination of polycyclic aromatic hydrocarbons in waters. J Chromatogr A 1300:134–140. https://doi.org/10.1016/j.chroma.2013.03.026

    Article  CAS  Google Scholar 

  38. Xu S, Guo C, Li Y, Yu Z, Wei C, Tang Y (2014) Methyl parathion imprinted polymer nanoshell coated on the magnetic nanocore for selective recognition and fast adsorption and separation in soils. J Hazard Mater 264:34–41. https://doi.org/10.1016/j.jhazmat.2013.10.060

    Article  CAS  PubMed  Google Scholar 

  39. Sanagi MM, Salleh S, Ibrahim WAW, Naim AA, Hermawan D, Miskam M (2013) Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. J Food Compos Anal 32:155–161. https://doi.org/10.1016/j.jfca.2013.09.001

    Article  CAS  Google Scholar 

  40. Zhou MC, Hu NN, Shu SH, Wang M (2015) Molecularly imprinted nanomicrospheres as matrix solid-phase dispersant combined with gas chromatography for determination of four phosphorothioate pesticides in carrot and yacon. J Anal Meth Chem 2015:1–11. https://doi.org/10.1155/2015/385167

    Article  CAS  Google Scholar 

  41. Yang T, Feng S, Lu Y, Yin C, Wang JD (2016) Dual-template magnetic molecularly imprinted particles with multi-hollow structure for the detection of dicofol and chlorpyrifos-methyl. J Sep Sci 39:2388–2395. https://doi.org/10.1002/jssc.201600258

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by the National Key Research and Development Programs of China (No. 2017YFC1601600), National “Ten thousand Plan” Scientific and Technological Innovation Leading Talent Project (Feng ZHANG) and Shandong Provincial Key Research and Development Program (SPKR&DP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Informed consent is not applicable for this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lixia Liu is the first author while Minli Yang is the co-first author

Electronic supplementary material

ESM 1

(DOCX 521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Yang, M., He, M. et al. Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides. Microchim Acta 187, 503 (2020). https://doi.org/10.1007/s00604-020-04465-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04465-7

Keywords

Navigation