Skip to main content
Log in

CdSe quantum dots capped with a deep eutectic solvent as a fluorescent probe for copper(II) determination in various drinks

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The present study shows that copper(II) ions can be determined with a new fluorescent probe that is based on the use of CdSe quantum dots capped with deep eutectic solvent (DES-CdSe QDs). The capped QDs were prepared in aqueous phase by a one-step procedure under ambient atmosphere using selenium dioxide as a stable precursor for selenium, and ascorbic acid as non-toxic reducing agent. The deep eutectic solvent is composed of choline chloride and thioglycolic acid and acts as stabilizing and functionalizing agent. The fluorescent probe undergoes an increase in the fluorescence intensity (with excitation/emission wavelengths at 380/560 nm) in the presence of Cu(II). Other ions display no significant effect on fluorescence. The effects of sample pH value, concentration of buffer, and volume of QDs solution were optimized by response surface methodology using a Box-Behnken statistical design. Under the optimal conditions, the response of the probe is linear in the 10–600 nM Cu(II) concentration range, with a 5.3 nM limit of detection. This is lower than the allowable maximum Cu(II) concentration in drinking water. The relative standard deviation of the method for five replicate measurements of Cu(II) at a 100 nM concentration level is 2.0%. The probe was successfully applied to the determination of Cu(II) in various drinks.

Schematic representation of a fluorometric method for the determination of Cu(II) at nanomolar concentration levels. The fluorescent system consists of deep eutectic solvent-capped cadmium selenide quantum dots (DES-CdSe QDs). Fluorescence is strongly enhanced by copper(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yang X, Jia Z, Cheng X, Luo N, Choi MM (2018) Synthesis of N-acetyl-l-cysteine capped Mn: doped CdS quantum dots for quantitative detection of copper ions. Spectrochim Acta A Mol Biomol Spectrosc 199:455–461. https://doi.org/10.1016/j.saa.2018.04.003

    Article  CAS  Google Scholar 

  2. He L, Bao Z, Zhang K, Yang D, Sheng B, Huang R, Zhao T, Liang X, Yang X, Yang A, Zhang C (2018) Ratiometric determination of copper (II) using dually emitting Mn (II)-doped ZnS quantum dots as a fluorescent probe. Microchim Acta 185:511. https://doi.org/10.1007/s00604-018-3043-8

    Article  CAS  Google Scholar 

  3. Du W, Yao L, Bian J, Liu Y, Wang X, Zhang J, Pang L (2018) Ionic liquid-based air-assisted liquid–liquid microextraction combined with dispersive micro-solid phase extraction for the preconcentration of copper in water samples. Anal Methods 10:3032–3038. https://doi.org/10.1039/C8AY00800K

    Article  CAS  Google Scholar 

  4. de Sousa JM, Couto MT, Cassella RJ (2018) Polyurethane foam functionalized with phenylfluorone for online preconcentration and determination of copper and cadmium in water samples by flame atomic absorption spectrometry. Microchem J 138:92–97. https://doi.org/10.1016/j.microc.2018.01.006

    Article  CAS  Google Scholar 

  5. Ozdemir S, Kilinc E, Oner ET (2019) Preconcentrations and determinations of copper, nickel and lead in baby food samples employing Coprinus silvaticus immobilized multi-walled carbon nanotube as solid phase sorbent. Food Chem 276:174–179. https://doi.org/10.1016/j.foodchem.2018.07.123

    Article  CAS  Google Scholar 

  6. Liu Z, Xue A, Chen H, Li S (2019) Quantitative determination of trace metals in single yeast cells by time-resolved ICP-MS using dissolved standards for calibration. Appl Microbiol Biotechnol 103:1475–1483. https://doi.org/10.1007/s00253-018-09587-w

    Article  CAS  Google Scholar 

  7. Liu Y, Zhu T, Deng M, Tang X, Han S, Liu A, Bai Y, Qu D, Huang X, Qiu F (2018) Selective and sensitive detection of copper (II) based on fluorescent zinc-doped AgInS2 quantum dots. J Lumin 201:182–188. https://doi.org/10.1016/j.jlumin.2018.04.046

    Article  CAS  Google Scholar 

  8. Wang J, Yu J, Wang X, Wang L, Li B, Shen D, Kang Q, Chen L (2018) Functional ZnS: Mn (II) quantum dot modified with L-cysteine and 6-mercaptonicotinic acid as a fluorometric probe for copper (II). Microchim Acta 185:420. https://doi.org/10.1007/s00604-018-2952-x

    Article  CAS  Google Scholar 

  9. Chen J, Chen H, Wang T, Li J, Wang J, Lu X (2019) Copper ion fluorescent probe based on Zr-MOFs composite material. Anal Chem 91:4331–4336. https://doi.org/10.1021/acs.analchem.8b03924

    Article  CAS  Google Scholar 

  10. Liu M, Zhao H, Chen S, Wang H, Quan X (2012) Photochemical synthesis of highly fluorescent CdTe quantum dots for “on-off-on” detection of cu (II) ions. Inorg Chim Acta 392:236–240. https://doi.org/10.1016/j.ica.2012.01.026

    Article  CAS  Google Scholar 

  11. Omer KM (2018) Highly passivated phosphorous and nitrogen co-doped carbon quantum dots and fluorometric assay for detection of copper ions. Anal Bioanal Chem 410:6331–6336. https://doi.org/10.1007/s00216-018-1242-0

    Article  CAS  Google Scholar 

  12. Sang F, Zhang X, Shen F (2019) Fluorescent methionine-capped gold nanoclusters for ultra-sensitive determination of copper (II) and cobalt (II), and their use in a test strip. Microchim Acta 186:373. https://doi.org/10.1007/s00604-019-3428-3

    Article  CAS  Google Scholar 

  13. Wu P, Zhao T, Wang S, Hou X (2014) Semicondutor quantum dots-based metal ion probes. Nanoscale 6:43–64. https://doi.org/10.1039/C3NR04628A

    Article  CAS  Google Scholar 

  14. Zarghami V, Mohammadi MR, Fray DJ (2012) Morphological manipulation of solvothermal prepared CdSe nanostructures by controlling the growth rate of nanocrystals as a kinetic parameter. J Electron Mater 41:3050–3055. https://doi.org/10.1007/s11664-012-2232-1

    Article  Google Scholar 

  15. Hodlur RM, Rabinal MK (2013) A novel one-step synthesis of highly fluorescent CdSe QD’s of tunable light emission by aqueous route. In: AIP Conference Proceedings. pp 348–349. https://doi.org/10.1063/1.4791054

  16. Fernández-Argüelles MT, Jin WJ, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2005) Surface-modified CdSe quantum dots for the sensitive and selective determination of cu (II) in aqueous solutions by luminescent measurements. Anal Chim Acta 549:20–25. https://doi.org/10.1016/j.aca.2005.06.013

    Article  CAS  Google Scholar 

  17. Wang R, Wei X, Xie J, Wang B, He X (2018) One-step synthesis of CdSe quantum dots by using hydrazine hydrate reduction of selenium dioxide. Aust J Chem 71:524–526. https://doi.org/10.1071/CH18100

    Article  CAS  Google Scholar 

  18. Khan ZMSH, Khan SA, Zulfequar M (2017) Study of thiol capped CdSe quantum dots using SeO2 precursor for selenium source. Mater Sci Semicond Process 57:190–196. https://doi.org/10.1016/j.mssp.2016.10.022

    Article  CAS  Google Scholar 

  19. Wang Y, Mo Y, Zhou L (2011) Synthesis of CdSe quantum dots using selenium dioxide as selenium source and its interaction with pepsin. Spectrochim Acta A Mol Biomol Spectrosc 79:1311–1315. https://doi.org/10.1016/j.saa.2011.04.061

    Article  CAS  Google Scholar 

  20. Wang Y, Yu M, Yang K, Lu J, Chen L (2015) Simple synthesis of luminescent CdSe quantum dots from ascorbic acid and selenium dioxide. Luminescence 30:1375–1379. https://doi.org/10.1002/bio.2909

    Article  CAS  Google Scholar 

  21. Tang B, Zhang H, Row KH (2015) Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci 38:1053–1064. https://doi.org/10.1002/jssc.201401347

    Article  CAS  Google Scholar 

  22. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p

    Article  CAS  Google Scholar 

  23. Wang N, Zheng AQ, Liu X, Chen JJ, Yang T, Chen ML, Wang JH (2018) Deep eutectic solvent-assisted preparation of nitrogen/chloride-doped carbon dots for intracellular biological sensing and live cell imaging. ACS Appl Mater Interfaces 10:7901–7909. https://doi.org/10.1021/acsami.8b00947

    Article  CAS  Google Scholar 

  24. Ghorpade UV, Suryawanshi MP, Shin SW, Kim J, Kang SH, Ha JS, Kolekar SS, Kim JH (2018) Unassisted visible solar water splitting with efficient photoelectrodes sensitized by quantum dots synthesized via an environmentally friendly eutectic solvent-mediated approach. J Mater Chem A 6:22566–22579. https://doi.org/10.1039/C8TA05901B

    Article  CAS  Google Scholar 

  25. Jiang X, Shi Y, Liu X, Wang M, Song P, Xu F, Zhang X (2018) Synthesis of nitrogen-doped lignin/DES carbon quantum dots as a fluorescent probe for the detection of Fe3+ ions. Polymers (Basel) 10:1282. https://doi.org/10.3390/polym10111282

    Article  CAS  Google Scholar 

  26. Wang Y, Yang H, Xia Z, Tong Z, Zhou L (2011) One-pot synthesis of CdSe quantum dots using selenium dioxide as a selenium source in aqueous solution. Bull Kor Chem Soc 32:2316–2318. https://doi.org/10.5012/bkcs.2011.32.7.2316

    Article  CAS  Google Scholar 

  27. Beyki MH, Shemirani F, Khani R (2014) Green preconcentration of trace amounts of copper from water and food samples onto novel organo-nanoclay prior to flame atomic absorption spectrometry. J AOAC Int 97:1426–1433. https://doi.org/10.5740/jaoacint.12-212

    Article  CAS  Google Scholar 

  28. Godwill EA, Jane IC, Scholastica IU, Marcellus U, Eugene AL, Gloria OA (2015) Determination of some soft drink constituents and contamination by some heavy metals in Nigeria. Toxicol Rep 2:384–390. https://doi.org/10.1016/j.toxrep.2015.01.014

    Article  CAS  Google Scholar 

  29. Bowers MJ, McBride JR, Rosenthal SJ (2005) White-light emission from magic-sized cadmium selenide nanocrystals. J Am Chem Soc 127:15378–15379. https://doi.org/10.1021/ja055470d

    Article  CAS  Google Scholar 

  30. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138. https://doi.org/10.1021/ac0258251

    Article  CAS  Google Scholar 

  31. Yang S, Guo W, Sun X (2018) Electrostatic association complex of a polymer capped CdTe(S) quantum dot and a small molecule dye as a robust ratiometric fluorescence probe of copper ions. Dyes Pigments 158:114–120. https://doi.org/10.1016/j.dyepig.2018.05.031

    Article  CAS  Google Scholar 

  32. Hao Y, Liu L, Long Y, Wang J, Liu YN, Zhou F (2013) Sensitive photoluminescent detection of Cu2+ in real samples using CdS quantum dots in combination with a Cu2+-reducing reaction. Biosens Bioelectron 41:723–729. https://doi.org/10.1016/j.bios.2012.09.064

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Research Council of the University of Birjand for supporting this research in part (Grant No. 2016–35,703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Sadeghi.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, S., Davami, A. CdSe quantum dots capped with a deep eutectic solvent as a fluorescent probe for copper(II) determination in various drinks. Microchim Acta 187, 147 (2020). https://doi.org/10.1007/s00604-019-4085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4085-2

Keywords

Navigation