Skip to main content
Log in

A composite prepared from MoS2 quantum dots and silver nanoparticles and stimulated by mercury(II) is a robust oxidase mimetic for use in visual determination of cysteine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

MoS2 quantum dots were hydrothermally synthesized and utilized for the formation and stabilization of a nanocomposite with silver nanoparticles (AgNPs) in a single step. This composite was characterized by transmission electron microscopy and zeta potential measurements. It is found that this nanohybrid can be stimulated by mercury(II) ion and then exhibits excellent oxidase mimicking activity. The oxidase-like activity is demonstrated by the oxidation of 3,3′,5,5′-tetramethylbenzidine by H2O2 that leads to the formation of a blue product. An assay was developed for determination of cysteine (Cys) at ultra-trace level because Cys inhibits the activity of the nanozyme via interaction with Hg(II). The Cys assay, best performed at a wavelength of 652 nm, works in the 1–100 μM concentration range and has a 0.82 μM detection limit. In addition, a portable Cys test kit is described that was applied to the determination of Cys in serum samples. The resulting colorations were compared with color chat wheel. The method is simple, rapid, cost-effective, and sensitive.

Schematic presentation of oxidase mimetic activity of the Hg@ MoS2-QDs-AgNPs and colorimetric sensing of Cys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pan N, Li-Ying W, Wu LL et al (2017) Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of Au@Pt core-shell nanohybrids. Microchim Acta 184:65–72. https://doi.org/10.1007/s00604-016-1981-6

    Article  CAS  Google Scholar 

  2. He J, Wu X, Long Z, Hou X (2019) Fast and sensitive fluorescent and visual sensing of cysteine using Hg-metalated PCN-222. Microchem J 145:68–73. https://doi.org/10.1016/j.microc.2018.10.001

    Article  CAS  Google Scholar 

  3. Xue Z, Xiong L, Peng H et al (2018) A selective colorimetric sensing strategy for cysteine based on an indicator-displacement mechanism. New J Chem 42:4324–4330. https://doi.org/10.1039/C7NJ03887A

    Article  CAS  Google Scholar 

  4. Wu L-L, Wang L-Y, Xie Z-J et al (2016) Colorimetric assay of l-cysteine based on peroxidase-mimicking DNA-Ag/Pt nanoclusters. Sensors Actuators B Chem 235:110–116. https://doi.org/10.1016/J.SNB.2016.05.069

    Article  CAS  Google Scholar 

  5. Zhang M, Yu M, Li F et al (2007) A highly selective fluorescence turn-on sensor for cysteine/Homocysteine and its application in bioimaging. J Am Chem Soc 129:10322–10323. https://doi.org/10.1021/JA073140I

    Article  CAS  PubMed  Google Scholar 

  6. Chwatko G, Kuźniak E, Kubalczyk P et al (2014) Determination of cysteine and glutathione in cucumber leaves by HPLC with UV detection. Anal Methods 6:8039–8044. https://doi.org/10.1039/C4AY01574F

    Article  CAS  Google Scholar 

  7. Menestrina F, Osorio Grisales J, Castells CB (2016) Chiral analysis of derivatized amino acids from kefir by gas chromatography. Microchem J 128:267–273. https://doi.org/10.1016/j.microc.2016.05.007

    Article  CAS  Google Scholar 

  8. Pazalja M, Kahrović E, Zahirović A (2016) ELECTROCHEMICAL SCIENCE Electrochemical sensor for determination of L-cysteine based on carbon electrodes modified with Ru(III) Schiff Base complex, carbon nanotubes and Nafion. Int J Electrochem Sci 11:10939–10952. https://doi.org/10.20964/2016.12.86

    Article  CAS  Google Scholar 

  9. Lee PT, Thomson JE, Karina A et al (2015) Selective electrochemical determination of cysteine with a cyclotricatechylene modified carbon electrode. Analyst 140:236–242. https://doi.org/10.1039/C4AN01835D

    Article  CAS  PubMed  Google Scholar 

  10. Xue Z, Xiong L, Rao H et al (2019) A naked-eye liquid-phase colorimetric assay of simultaneous detect cysteine and lysine. Dyes Pigments 160:151–158. https://doi.org/10.1016/J.DYEPIG.2018.07.054

    Article  CAS  Google Scholar 

  11. Wu X-Q, Xu Y, Chen Y-L et al (2014) Peroxidase-like activity of ferric ions and their application to cysteine detection. RSC Adv 4:64438–64442. https://doi.org/10.1039/C4RA11000E

    Article  CAS  Google Scholar 

  12. Singh M, Weerathunge P, Liyanage PD et al (2017) Competitive inhibition of the enzyme-mimic activity of Gd-based Nanorods toward highly specific colorimetric sensing of l -cysteine. Langmuir 33:10006–10015. https://doi.org/10.1021/acs.langmuir.7b01926

    Article  CAS  PubMed  Google Scholar 

  13. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093. https://doi.org/10.1039/c3cs35486e

    Article  CAS  PubMed  Google Scholar 

  14. Han KN, Choi J-S, Kwon J (2017) Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci Rep 7:2806. https://doi.org/10.1038/s41598-017-02948-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zarlaida F, Adlim M (2017) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review. Microchim Acta 184:45–58. https://doi.org/10.1007/s00604-016-1967-4

    Article  CAS  Google Scholar 

  16. Zhou Y, Dong H, Liu L et al (2014) Selective and sensitive colorimetric sensor of mercury(II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sensors Actuators B Chem 196:106–111. https://doi.org/10.1016/J.SNB.2014.01.060

    Article  CAS  Google Scholar 

  17. Jazayeri MH, Aghaie T, Avan A et al (2018) Colorimetric detection based on gold nano particles (GNPs): an easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens Bio-Sensing Res 20:1–8. https://doi.org/10.1016/J.SBSR.2018.05.002

    Article  Google Scholar 

  18. Chen W, Fang X, Li H et al (2016) A simple paper-based colorimetric device for rapid mercury(II) assay. Sci Rep 6:31948. https://doi.org/10.1038/srep31948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin X-Q, Deng H-H, Wu G-W et al (2015) Platinum nanoparticles/graphene-oxide hybrid with excellent peroxidase-like activity and its application for cysteine detection. Analyst 140:5251–5256. https://doi.org/10.1039/C5AN00809C

    Article  CAS  PubMed  Google Scholar 

  20. Jiang H, Chen Z, Cao H, Huang Y (2012) Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose. Analyst 137:5560–5564. https://doi.org/10.1039/c2an35911a

    Article  CAS  PubMed  Google Scholar 

  21. Li L, Gui L, Li W (2015) A colorimetric silver nanoparticle-based assay for Hg(II) using lysine as a particle-linking reagent. Microchim Acta 182:1977–1981. https://doi.org/10.1007/s00604-015-1536-2

    Article  CAS  Google Scholar 

  22. Rameshkumar P, Manivannan S, Ramaraj R (2013) Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions. J Nanopart Res 15:1–9. https://doi.org/10.1007/s11051-013-1639-9

    Article  CAS  Google Scholar 

  23. Lin Y, Ren J, Qu X (2014) Catalytically active Nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105. https://doi.org/10.1021/ar400250z

    Article  CAS  PubMed  Google Scholar 

  24. He W, Wu X, Liu J et al (2010) Design of AgM bimetallic alloy nanostructures (M = au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater 22:2988–2994. https://doi.org/10.1021/cm100393v

    Article  CAS  Google Scholar 

  25. Wang Y, Yang F, Yang X (2010) Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Appl Mater Interfaces 2:339–342. https://doi.org/10.1021/am9007243

    Article  CAS  PubMed  Google Scholar 

  26. Dong H, Tang S, Hao Y et al (2016) Ent MoS2 quantum dots: ultrasonic preparation, up-conversion and Down-conversion bioimaging, and PhotodynFluorescamic therapy. ACS Appl Mater Interfaces 8:3107–3114. https://doi.org/10.1021/acsami.5b10459

    Article  CAS  PubMed  Google Scholar 

  27. Kufer D, Nikitskiy I, Lasanta T et al (2015) Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv Mater 27:176–180. https://doi.org/10.1002/adma.201402471

    Article  CAS  PubMed  Google Scholar 

  28. Mandal S, Gole A, Lala N et al (2001) Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds. Langmuir 17:6262–6268. https://doi.org/10.1021/la010536d

    Article  CAS  Google Scholar 

  29. Katok KV, Whitby RLD, Fukuda T et al (2012) Hyperstoichiometric interaction between silver and mercury at the Nanoscale. Angew Chem Int Ed 51:2632–2635. https://doi.org/10.1002/anie.201106776

    Article  CAS  Google Scholar 

  30. Mishra R, Nirala NR, Pandey RK et al (2017) Homogenous dispersion of MoS 2 Nanosheets in Polyindole matrix at air-water Interface assisted by Langmuir technique. Langmuir 33:13572–13580. https://doi.org/10.1021/acs.langmuir.7b03019

    Article  CAS  PubMed  Google Scholar 

  31. Vinita NNR, Prakash R (2018) One step synthesis of AuNPs@MoS2-QDs composite as a robust peroxidase- mimetic for instant unaided eye detection of glucose in serum, saliva and tear. Sensors Actuators B Chem 263:109–119. https://doi.org/10.1016/J.SNB.2018.02.085

    Article  CAS  Google Scholar 

  32. Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS 2 quantum dot-interspersed exfoliated MoS 2 Nanosheets. ACS Nano 8:5297–5303. https://doi.org/10.1021/nn501479e

    Article  CAS  PubMed  Google Scholar 

  33. Bai R, Wang P, Fang Y (2017) Probing microstructures of molybdenum disulfide quantum dots by resonant Raman scattering. Appl Phys Lett 110:161910. https://doi.org/10.1063/1.4981803

    Article  CAS  Google Scholar 

  34. Gao L, Zhuang J, Nie L et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  35. Wang G-L, Xu X-F, Cao L-H et al (2014) Mercury(ii)-stimulated oxidase mimetic activity of silver nanoparticles as a sensitive and selective mercury(ii) sensor. RSC Adv 4:5867. https://doi.org/10.1039/c3ra45226c

    Article  CAS  Google Scholar 

  36. Lu Y, Yu J, Ye W et al (2016) Spectrophotometric determination of mercury(II) ions based on their stimulation effect on the peroxidase-like activity of molybdenum disulfide nanosheets. Microchim Acta 183:2481–2489. https://doi.org/10.1007/s00604-016-1886-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to Prof D Dash, IMS, BHU, Varanasi for his support in biological experiments and providing blood serum. Authors are also thankful to CIF, IIT (BHU) for providing instrumentation facilities. Richa Mishra is thankful to DST-INSPIRE for providing her fellowship. Dr. Narsingh R. Nirala greatly acknowledges SERB N-PDF (PDF/2016/000243).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Narsingh Raw Nirala or Rajiv Prakash.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, R.P., Mishra, R., Singh, P. et al. A composite prepared from MoS2 quantum dots and silver nanoparticles and stimulated by mercury(II) is a robust oxidase mimetic for use in visual determination of cysteine. Microchim Acta 187, 74 (2020). https://doi.org/10.1007/s00604-019-4041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4041-1

Keywords

Navigation