Skip to main content
Log in

Voltammetric aptasensor for bisphenol A based on double signal amplification via gold-coated multiwalled carbon nanotubes and an ssDNA–dye complex

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An aptasensor is described for the electrochemical determination of bisphenol A (BPA). Gold-coated multiwalled carbon nanotubes (Au/MWCNTs) and a single-stranded DNA-dye complex are used as a double signal-amplification system. The BPA-binding aptamer was assembled on a disposable electrode modified with Au/MWCNTs. Methylene blue (MB) was then intercalated into the immobilized aptamer with an approximately molecular ratio of 4 to form a complex. Upon interaction with BPA, the immobilized aptamer underwent a conformational change. This causes the intercalated MB to be released from the complex into solution. As a result, the electrochemical signal of the intercalated MB, typically measured using square wave voltammetry at a potential of −0.20 V (vs. Ag/AgCl (saturated KCl)) decreases. The fabrication of the aptasensor was characterized by the scanning electron microscopy, atomic force microscopy, and electrochemical techniques. Under optimal experimental conditions, the current drops linearly with the logarithm of BPA concentrations over the range from 10 fM to 1 nM, and the limit of detection is 8 fM. The assay was applied to the determination of BPA in plastic drinking bottles, tap water, and milk.

Schematic illustration of fabricating the aptasensor for bisphenol A (BPA) based on double signal amplification via gold-coated multiwalled carbon nanotubes (Au/MWCNT) and an aptamer–dye complex. PET: poly(ethylene terephthalate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vom Saal FS, Hughes C (2005) An extensive new literature concerning low-dose effects of bisphenol a shows the need for a new risk assessment. Environ Health Perspect 113:926–933. https://doi.org/10.1289/ehp.7713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mandrah K, Satyanarayana GNV, Roy SK (2017) A dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by injector port silylation coupled with gas chromatography-tandem mass spectrometry for the determination of nine bisphenols in bottled carbonated beverages. J Chromatogr A 1528:10–17. https://doi.org/10.1016/j.chroma.2017.10.071

    Article  CAS  PubMed  Google Scholar 

  3. Owczarek K, Kubica P, Kudłak B, Rutkowska A, Konieczna A, Rachoń D, Namieśnik J, Wasik A (2018) Determination of trace levels of eleven bisphenol a analogues in human blood serum by high performance liquid chromatography-tandem mass spectrometry. Sci Total Environ 628:1362–1368. https://doi.org/10.1016/j.scitotenv.2018.02.148

    Article  CAS  PubMed  Google Scholar 

  4. Pellegrino Vidal RB, Ibañez GA, Escandar GM (2015) Chemometrics-assisted cyclodextrin-enhanced excitation-emission fluorescence spectroscopy for the simultaneous green determination of bisphenol a and nonylphenol in plastics. Talanta 143:162–168. https://doi.org/10.1016/j.talanta.2015.05.030

    Article  CAS  Google Scholar 

  5. Lee ES, Kim GB, Ryu SH, Kim H, Yoo HH, Yoon MY, Lee JW, Gye MC, Kim YP (2018) Fluorescing Aptamer-gold nanosensors for enhanced sensitivity to Bisphenol a. Sensors Actuators B Chem 260:371–379. https://doi.org/10.1016/j.snb.2018.01.018

    Article  CAS  Google Scholar 

  6. Ren S, Li Q, Li Y, Li S, Han T, Wang J, Peng Y, Bai J, Ning B, Gao Z (2019) Upconversion fluorescent aptasensor for bisphenol a and 17β-estradiol based on a nanohybrid composed of black phosphorus and gold, and making use of signal amplification via DNA tetrahedrons. Microchim Acta 186(3):151–158. https://doi.org/10.1007/s00604-019-3266-3

    Article  CAS  Google Scholar 

  7. Ragavan KV, Rastogi NK, Thakur MS (2013) Sensors and biosensors for analysis of bisphenol-a. Trends Anal Chem 52:248–260. https://doi.org/10.1016/j.trac.2013.09.006

    Article  CAS  Google Scholar 

  8. Nguyen VT, Kwon YS, Gu MB (2017) Aptamer-based environmental biosensors for small molecule contaminants. Curr Opin Biotechnol 45:15–23. https://doi.org/10.1016/j.copbio.2016.11.020

    Article  CAS  PubMed  Google Scholar 

  9. Huang Y, Li XF, Zheng SN (2016) A novel and label-free immunosensor for bisphenol a using rutin as the redox probe. Talanta 160:241–246. https://doi.org/10.1016/j.talanta.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  10. Alkasir RSJ, Ganesana M, Won YH, Stanciu L, Andreescu S (2010) Enzyme functionalized nanoparticles for electrochemical biosensors: a comparative study with applications for the detection of bisphenol a. Biosens Bioelectron 26:43–49. https://doi.org/10.1016/j.bios.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  11. Xu JY, Li Y, Bie JX, Jiang W, Guo JJ, Luo YL, Shen F, Sun CY (2015) Colorimetric method for determination of bisphenol a based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchim Acta 182:2131–2138. https://doi.org/10.1007/s00604-015-1547-z

    Article  CAS  Google Scholar 

  12. Qin J, Shen J, Xu X, Yuan Y, He G, Chen H (2018) A glassy carbon electrode modified with nitrogen-doped reduced graphene oxide and melamine for ultra-sensitive voltammetric determination of bisphenol a. Microchim Acta 185:459–466. https://doi.org/10.1007/s00604-018-2998-9

    Article  CAS  Google Scholar 

  13. Pan DD, Gu YY, Lan HZ, Sun YY, Gao HJ (2015) Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol a. Anal Chim Acta 853:297–302. https://doi.org/10.1016/j.aca.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  14. Ashraf G, Asif M, Aziz A, Wang Z, Qiu X, Huang Q, Xiao F, Liu H (2019) Nanocomposites consisting of copper and copper oxide incorporated into MoS4 nanostructures for sensitive voltammetric determination of bisphenol a. Microchim Acta 186:337–339. https://doi.org/10.1007/s00604-019-3406-9

    Article  CAS  Google Scholar 

  15. Baghayeri M, Ansari R, Nodehi M, Razavipanah I, Veisi H (2018) Voltammetric aptasensor for bisphenol a based on the use of a MWCNT/Fe3O4@gold nanocomposite. Microchim Acta 185:320–329. https://doi.org/10.1007/s00604-018-2838-y

    Article  CAS  Google Scholar 

  16. Li HY, Wang W, Lv Q, Xi GC, Bai H, Zhang Q (2016) Disposable paper-based electrochemical sensor based on stacked gold nanoparticles supported carbon nanotubes for the determination of bisphenol a. Electrochem Commun 68:104–107. https://doi.org/10.1016/j.elecom.2016.05.010

    Article  CAS  Google Scholar 

  17. Deiminiat B, Rounaghi GH, Arbab-Zavar MH, Razavipanah I (2017) A novel electrochemical aptasensor based on f-MWCNTs/AuNPs nanocomposite for label-free detection of bisphenol a. Sensors Actuators B Chem 242:158–166. https://doi.org/10.1016/j.snb.2016.11.041

    Article  CAS  Google Scholar 

  18. Cao HX, Wang L, Pan CG, He YS, Liang GX (2018) Aptamer based electrochemiluminescent determination of bisphenol a by using carboxylated graphitic carbon nitride. Microchim Acta 185:463–468. https://doi.org/10.1007/s00604-018-2997-x

    Article  CAS  Google Scholar 

  19. Derikvandi Z, Abbasi AR, Roushani M, Derikvand Z, Azadbakht A (2016) Design of ultrasensitive bisphenol A-aptamer based on Pt nanoparticles loading to Polyethyleneimine functionalized carbon nanotubes. Anal Biochem 512:47–57. https://doi.org/10.1016/j.ab.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  20. Yu ZH, Luan YN, Li HY, Wang W, Wang XY, Zhang Q (2019) A disposable electrochemical aptasensor using single-stranded DNA–methylene blue complex as signal-amplification platform for sensitive sensing of bisphenol a. Sensors Actuators B Chem 284:73–80. https://doi.org/10.1016/j.snb.2018.12.126

    Article  CAS  Google Scholar 

  21. Jo M, Ahn JY, Lee J, Lee S, Hong SW, Yoo JW, Kang J, Dua P, Lee D, Hong S, Kim S (2011) Development of single-stranded DNA aptamers for specific bisphenol a detection. Oligonucleotides 21:85–91. https://doi.org/10.1089/oli.2010.0267

    Article  CAS  Google Scholar 

  22. Wang W, Bai H, Li HY, Lv Q, Wang ZJ, Zhang Q (2017) Disposable plastic electrode for electrochemical determination of total chromium and hexavalent chromium. J Electroanal Chem 794:148–155. https://doi.org/10.1016/j.jelechem.2017.04.016

    Article  CAS  Google Scholar 

  23. Wang W, Bai H, Li HY, Lv Q, Zhang Q, Bao N (2016) Carbon tape coated with gold film as stickers for bulk fabrication of disposable gold electrodes to detect Cr(VI). Sensors Actuators B Chem 236:218–225. https://doi.org/10.1016/j.snb.2016.05.155

    Article  CAS  Google Scholar 

  24. Zehani N, Fortgang P, Lachgar MS, Baraket A, Arab M, Dzyadevych SV, Kherrat R, Jaffrezic-Renault N (2015) Highly sensitive electrochemical biosensor for bisphenol a detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Biosens Bioelectron 74:830–835. https://doi.org/10.1016/j.bios.2015.07.051

    Article  CAS  PubMed  Google Scholar 

  25. Yang JC, Wang X, Zhang DF, Wang LL, Li Q, Zhang L (2014) Simultaneous determination of endocrine disrupting compounds bisphenol F and bisphenol AF using carboxyl functionalized multi-walled carbon nanotubes modified electrode. Talanta 130:207–212. https://doi.org/10.1016/j.talanta.2014.06.056

    Article  CAS  PubMed  Google Scholar 

  26. Bard AJ, Faulkner LR (2011) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  27. Beiranvand ZS, AbbasiAR DS, Karimi Z, Azadbakht A (2017) Aptamer-based electrochemical biosensor by using au-Pt nanoparticles, carbon nanotubes and acriflavine platform. Anal Biochem 518:35–45. https://doi.org/10.1016/j.ab.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  28. Liu YJ, Liu Y, Liu BH (2016) A dual-signaling strategy for ultrasensitive detection of bisphenol a by aptamer-based electrochemical biosensor. J Electroanal Chem 781:265–271. https://doi.org/10.1016/j.jelechem.2016.06.048

    Article  CAS  Google Scholar 

  29. Liu YQ, Zhang X, Yang JS, Xiong EH, Zhang XH, Chen JH (2016) Sensitive detection of bisphenol a based on ratiometric electrochemical aptasensor. Can J Chem 94:509–514. https://doi.org/10.1139/cjc-2015-0533

    Article  CAS  Google Scholar 

  30. Xue F, Wu JJ, Chu HQ, Mei ZL, Ye YK, Liu J, Zhang R, Peng CF, Zheng L, Chen W, (2013) Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchimica Acta 180 (1-2):109-115

    Article  Google Scholar 

  31. Ye SJ, Ye RB, Shi YD, Qiu B, Guo LH, Huang DH, Lin ZY, Chen GN, (2017) Highly sensitive aptamer based on electrochemiluminescence biosensor for label-free detection of bisphenol A. Analytical and Bioanalytical Chemistry 409 (30):7145-7151

    Article  CAS  Google Scholar 

  32. Yu P, Liu YQ, Zhang XH, Zhou JW, Xiong EH, Li XY, Chen JH, (2016) A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy. Biosensors and Bioelectronics 79:22-28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Dean Foundation of Chinese Academy of Inspection and Quarantine (2017JK041) and the National Key Research and Development Program of China (2016YFF0203703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ding, S., Wang, W. et al. Voltammetric aptasensor for bisphenol A based on double signal amplification via gold-coated multiwalled carbon nanotubes and an ssDNA–dye complex. Microchim Acta 186, 860 (2019). https://doi.org/10.1007/s00604-019-4006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4006-4

Keywords

Navigation