Skip to main content
Log in

Fabrication of WO2/W@C core-shell nanospheres for voltammetric simultaneous determination of thymine and cytosine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Pomegranate-like multicore WO2/W nanocrystals wrapped with layers of multiporous carbon were fabricated via carbonization of a copper(II)-organic framework host and a tungsten-based polyoxometalates guest, and subsequent etching off the metallic copper. The WO2/W@C core-shell nanospheres were employed to modify an electrode for the analysis of the DNA bases thymine (T) and cytosine (C) by differential pulse voltammetry. The WO2/W@C exhibited strongly increased oxidation signal of T and C. Under optimized conditions, the enhanced peak current represented excellent analytical performance for determination of T and C. This is attributed to the synergic effects of the porous multicore–shell microstructure and the use of tungsten-based materials with their excellent electrocatalytic activity for T and C, with typical peaks voltages near 1.26 V and 1.44 V. The calibration plots for T and C extend from 1 to 4000 μM and from 1 to 3000 μM, respectively, and both detection limits are 0.2 μM. The method was successfully applied to the determination of T and C in spiked blood and urine samples, and the recoveries are form 97.3 to 105.0%.

Core-shell nanospheres of type WO2/W-carbon were prepared for highly sensitive simultaneous voltammetric determination of thymine and cytosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li H, Wang X, Wang Z, Zhao W (2016) Simultaneous determination of guanine, adenine, thymine and cytosine with a simple electrochemical method. J Solid State Electrochem 20(8):2223–2230. https://doi.org/10.1007/s10008-016-3227-2

    Article  CAS  Google Scholar 

  2. Wei Y, Huang Q-A, Li M-G, Huang X-J, Fang B, Wang L (2011) CeO2 nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine. Electrochim Acta 56(24):8571–8575. https://doi.org/10.1016/j.electacta.2011.07.048

    Article  CAS  Google Scholar 

  3. Gill BD, Indyk HE (2007) Development and application of a liquid chromatographic method for analysis of nucleotides and nucleosides in milk and infant formulas. Int Dairy J 17(6):596–605. https://doi.org/10.1016/j.idairyj.2006.08.001

    Article  CAS  Google Scholar 

  4. Erbao L, Bingchun X (2006) Flow injection determination of adenine at trace level based on luminol-K2Cr2O7 chemiluminescence in a micellar medium. J Pharm Biomed Anal 41(2):649–653. https://doi.org/10.1016/j.jpba.2005.12.012

    Article  CAS  PubMed  Google Scholar 

  5. Ensafi AA, Heydari-Bafrooei E, Amini M (2012) DNA-functionalized biosensor for riboflavin based electrochemical interaction on pretreated pencil graphite electrode. Biosens Bioelectron 31(1):376–381. https://doi.org/10.1016/j.bios.2011.10.050

    Article  CAS  PubMed  Google Scholar 

  6. Gao F, Fan T, Ou S, Wu J, Zhang X, Luo J, Li N, Yao Y, Mou Y, Liao X, Geng D (2018) Highly efficient electrochemical sensing platform for sensitive detection DNA methylation, and methyltransferase activity based on Ag NPs decorated carbon nanocubes. Biosens Bioelectron 99:201–208. https://doi.org/10.1016/j.bios.2017.07.063

    Article  CAS  PubMed  Google Scholar 

  7. Wang P, Wu H, Dai Z, Zou X (2011) Simultaneous detection of guanine, adenine, thymine and cytosine at choline monolayer supported multiwalled carbon nanotubes film. Biosens Bioelectron 26(7):3339–3345. https://doi.org/10.1016/j.bios.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  8. Ren S, Wang H, Zhang H, Yu L, Li M, Li M (2015) Direct electrocatalytic and simultaneous determination of purine and pyrimidine DNA bases using novel mesoporous carbon fibers as electrocatalyst. J Electroanal Chem 750:65–73. https://doi.org/10.1016/j.jelechem.2015.05.020

    Article  CAS  Google Scholar 

  9. Kaur B, Srivastava R (2014) Synthesis of ionic liquids coated nanocrystalline zeolite materials and their application in the simultaneous determination of adenine, cytosine, guanine, and thymine. Electrochim Acta 133:428–439. https://doi.org/10.1016/j.electacta.2014.04.019

    Article  CAS  Google Scholar 

  10. Yin H, Zhu J, Chen J, Gong J, Nie Q (2018) MOF-derived in situ growth of carbon nanotubes entangled Ni/NiO porous polyhedrons for high performance glucose sensor. Mater Lett 221:267–270. https://doi.org/10.1016/j.matlet.2018.03.156

    Article  CAS  Google Scholar 

  11. Wei W, Dong S, Huang G, Xie Q, Huang T (2018) MOF-derived Fe2O3 nanoparticle embedded in porous carbon as electrode materials for two enzyme-based biosensors. Sensors Actuators B Chem 260:189–197. https://doi.org/10.1016/j.snb.2017.12.207

    Article  CAS  Google Scholar 

  12. Zhang L, Dou Y, Guo H, Zhang B, Liu X, Wan M, Li W, Hu X, Dou S, Huang Y, Liu H (2017) A facile way to fabricate double-shell pomegranate-like porous carbon microspheres for high-performance Li-ion batteries. J Mater Chem A 5(24):12073–12079. https://doi.org/10.1039/c7ta02415k

    Article  CAS  Google Scholar 

  13. Zhu G, Wang L, Lin H, Ma L, Zhao P, Hu Y, Chen T, Chen R, Wang Y, Tie Z, Liu J, Jin Z (2018) Walnut-like multicore-Shell MnO encapsulated nitrogen-rich carbon Nanocapsules as anode material for long-cycling and soft-packed Lithium-ion batteries. Adv Funct Mater 28(18):1800003. https://doi.org/10.1002/adfm.201800003

    Article  CAS  Google Scholar 

  14. Yang L, Zhang Y, Liu X, Jiang X, Zhang Z, Zhang T, Zhang L (2014) The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chem Eng J 246:88–96. https://doi.org/10.1016/j.cej.2014.02.044

    Article  CAS  Google Scholar 

  15. Liu X, Qi X, Zhang L (2018) 3D hierarchical magnetic hollow sphere-like CuFe2O4 combined with HPLC for the simultaneous determination of Sudan I-IV dyes in preserved bean curd. Food Chem 241:268–274. https://doi.org/10.1016/j.foodchem.2017.08.113

    Article  CAS  PubMed  Google Scholar 

  16. Tong Y, Liu X, Zhang L (2019) Green construction of Fe3O4@GC submicrocubes for highly sensitive magnetic dispersive solid-phase extraction of five phthalate esters in beverages and plastic bottles. Food Chem 277:579–585. https://doi.org/10.1016/j.foodchem.2018.11.021

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Liu M, Zhang L (2018) Co-adsorption and sequential adsorption of the co-existence four heavy metal ions and three fluoroquinolones on the functionalized ferromagnetic 3D NiFe2O4 porous hollow microsphere. J Colloid Interface Sci 511:135–144. https://doi.org/10.1016/j.jcis.2017.09.105

    Article  CAS  PubMed  Google Scholar 

  18. Zhu C, Fu S, Du D, Lin Y (2016) Facilely tuning porous NiCo2 O4 Nanosheets with metal valence-state alteration and abundant oxygen vacancies as robust Electrocatalysts towards water splitting. Chemistry 22(12):4000–4007. https://doi.org/10.1002/chem.201504739

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Wang H, Li Y, Wang Q, Li D, Wang R, He B, Gong Y (2018) 2D metal–organic-framework array-derived hierarchical network architecture of cobalt oxide flakes with tunable oxygen vacancies towards efficient oxygen evolution reaction. J Catal 364:48–56. https://doi.org/10.1016/j.jcat.2018.05.006

    Article  CAS  Google Scholar 

  20. Wu HB, Xia BY, Yu L, Yu XY, Lou XW (2015) Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun 6:6512. https://doi.org/10.1038/ncomms7512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anu Prathap MU, Srivastava R, Satpati B (2013) Simultaneous detection of guanine, adenine, thymine, and cytosine at polyaniline/MnO2 modified electrode. Electrochim Acta 114:285–295. https://doi.org/10.1016/j.electacta.2013.10.064

    Article  CAS  Google Scholar 

  22. Kaur B, Srivastava R (2014) Ionic liquids coated Fe3O4 based inorganic-organic hybrid materials and their application in the simultaneous determination of DNA bases. Colloids Surf B: Biointerfaces 118:179–187. https://doi.org/10.1016/j.colsurfb.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  23. Shu C, Kang S, Jin YH, Yue X, Shen PK (2017) Bifunctional non-precious metal Electrocatalysts of porous WO2 hexahedral networks for full water splitting. J Mater Chem A 5:9655–9660. https://doi.org/10.1039/C7TA01527E

    Article  CAS  Google Scholar 

  24. Elias L, Cao P, Hegde C (2016) Magnetoelectrodeposition of Ni-W alloy coatings for enhanced hydrogen evolution reaction. RSC Adv 6:111358–111365. https://doi.org/10.1039/C6RA23944G

    Article  CAS  Google Scholar 

  25. Wang G, Sun H, Ding L, Zhou G, Wang ZS (2015) Growth of cu particles on Cu2O truncated octahedron: tuning of the cu content for efficient glucose sensing. Phys Chem Chem Phys 17:24361–24369. https://doi.org/10.1039/C5CP03748D

    Article  CAS  PubMed  Google Scholar 

  26. Xiao Y, Zheng L, Cao M (2015) Hybridization and pore engineering for achieving high-performance lithium storage of carbide as anode material. Nano Energy 12:152–160. https://doi.org/10.1016/j.nanoen.2014.12.015

    Article  CAS  Google Scholar 

  27. Wang Y, Guo X, Wang Z, Lü M, Wu B, Wang Y, Yan C, Yuan A, Yang H (2017) Controlled pyrolysis of MIL-88A to Fe2O3@C nanocomposites with varied morphologies and phases for advanced lithium storage. J Mater Chem A 5(48):25562–25573. https://doi.org/10.1039/c7ta08314a

    Article  CAS  Google Scholar 

  28. Xu X, Liu J, Liu Z, Shen J, Hu R, Liu J, Ouyang L, Zhang L, Zhu M (2017) Robust Pitaya-structured pyrite as high energy density cathode for high-rate Lithium batteries. ACS Nano 11(9):9033–9040. https://doi.org/10.1021/acsnano.7b03530

    Article  CAS  PubMed  Google Scholar 

  29. Zhang K, Yang H, Lü M, Yan C, Wu H, Yuan A, Lin S (2018) Porous MoO2-cu/C/Graphene nano-octahedrons quadruple nanocomposites as an advanced anode for lithium ion batteries with enhanced rate capability. J Alloys Compd 731:646–654. https://doi.org/10.1016/j.jallcom.2017.10.091

    Article  CAS  Google Scholar 

  30. Cao L, Li Y, Wu J, Li W, Huang J, Feng Y, Yao C, Li J, Wang R, Kang Q, Feng L (2018) Facile synthesis of carbon coated MoO3 nanorods decorated with WO2 nanoparticles as stable anodes for lithium-ion batteries. J Alloys Compd 744:672–678. https://doi.org/10.1016/j.jallcom.2018.02.112

    Article  CAS  Google Scholar 

  31. Shifu C, Lei C, Shen G, Gengyu C (2005) The preparation of coupled WO3/TiO2 photocatalyst by ball milling. Powder Technol 160(3):198–202. https://doi.org/10.1016/j.powtec.2005.08.012

    Article  CAS  Google Scholar 

  32. Anson FC (1964) Application of Potentiostatic current integration to the study of the adsorption of CobaIt(lll)-( Ethylenedinitri1o)tetraacetate on mercury electrodes. Anal Chem 36:932–934

    Article  CAS  Google Scholar 

  33. Gumpu MB, Veerapandian M, Krishnan UM, Rayappan JB (2017) Simultaneous electrochemical detection of cd(II), Pb(II), as(III) and hg(II) ions using ruthenium(II)-textured graphene oxide nanocomposite. Talanta 162:574–582. https://doi.org/10.1016/j.talanta.2016.10.076

    Article  CAS  PubMed  Google Scholar 

  34. Oliveira-Brett AM, Piedade JAP, Silva LA, Diculescu VC (2004) Voltammetric determination of all DNA nucleotides. Anal Biochem 332:321–329. https://doi.org/10.1016/j.ab.2004.06.021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Nature Science Foundation of China (NSFC51672116), Science and technology foundation of ocean and fisheries of liao ning province (201408, 201406).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingjia Guo or Lei Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, J., Li, Q. et al. Fabrication of WO2/W@C core-shell nanospheres for voltammetric simultaneous determination of thymine and cytosine. Microchim Acta 187, 62 (2020). https://doi.org/10.1007/s00604-019-3987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3987-3

Keywords

Navigation