Skip to main content
Log in

A nanosorbent consisting of a magnetic molecularly imprinted polymer and graphene oxide for multi-residue analysis of cephalosporins

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanosorbent composed of magnetite nanoparticles, graphene oxide and a molecularly imprinted polymer (Fe3O4@SiO2-NH2/GOx/MIP) was synthesized and applied to simultaneous extraction of cephalexin, cefazolin and cefoperazone from milk. The use of magnetite nanoparticles enables fast extraction by using an external magnet. The use of graphene oxide increases extraction affinity, and the MIP improves selectivity. Extraction efficiency was optimized by investigating the effects of the template-to-monomer and cross-linker ratios, the desorption condition, extraction time, salting-out effect, stirring rate, sample volume and amount of adsorbent. The cephalosporins were quantified by using HPLC. Under optimum condition, the linear range of the method extends from 2.5 to 100 μg L−1 for cephalexin and cefazolin, and from 5.0 to 100 μg L−1 for cefoperazone. The limits of detection are 2.5 μg L−1 for cephalexin and cefazolin, and 5 μg L−1 for cefoperazone. The adsorbent was applied to the extraction of cephalosporins from milk, with recoveries in a range from 80.2 to 111.7% and with RSDs of <8.5%.

Schematic representation of a nanocomposite adsorbent consisting of magnetic molecularly imprinted polymer and graphene oxide (GOx). Integrating of magnetite nanoparticles, GOx and high specificity of MIP, the method exhibited a rapid, high extraction efficiency, good selectivity for multi-residue analysis of cephalosporins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shukla RS, Pandey S, Bargale R (2008) Novel HPLC analysis of cefadroxil in bulk formulation. Asian J Pharm 2(2):4. https://doi.org/10.22377/ajp.v2i2.332

    Article  Google Scholar 

  2. Kundu S, Majumder T, Barat PK, Ray SK (2015) Development and validation of a HPLC-UV method for simultaneous determination of cefixime and ofloxacin in tablet formulation. Int J Pharm Sci Res 6(2):6. https://doi.org/10.13040/IJPSR.0975-8232.6(2).884-89

    Article  CAS  Google Scholar 

  3. Liu X, Yu Y, Zhao M, Zhang H, Li Y, Duan G (2014) Solid phase extraction using magnetic core mesoporous shell microspheres with C18-modified interior pore-walls for residue analysis of cephalosporins in milk by LC–MS/MS. Food Chem 150:206–212. https://doi.org/10.1016/j.foodchem.2013.10.145

    Article  CAS  PubMed  Google Scholar 

  4. Quesada-Molina C, Claude B, García-Campaña AM, del Olmo-Iruela M, Morin P (2012) Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer. Food Chem 135(2):775–779. https://doi.org/10.1016/j.foodchem.2012.05.014

    Article  CAS  PubMed  Google Scholar 

  5. Ali Ahmed SM, Elbashir AA, Aboul-Enein HY (2015) New spectrophotometric method for determination of cephalosporins in pharmaceutical formulations. Arab J Chem 8(2):233–239. https://doi.org/10.1016/j.arabjc.2011.08.012

    Article  CAS  Google Scholar 

  6. Maheshwari ML, Memon AA, Memon S, Memon F-u-N, Mughal UUR, Dayo A, Memon N, Ghoto MA, Khan Leghari M (2015) Optimization of HPLC method for determination of cefixime using 2-thiophenecarboxaldehyde as derivatizing reagent: a new approach. Saudi Pharm J 23(4):444–452. https://doi.org/10.1016/j.jsps.2015.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  7. Patil PN, Jacob S (2012) HPLC analysis of cephalosporins and study of different analytical parameters. Int J Pharm Sci Res 3(1):14. https://doi.org/10.13040/IJPSR.0975-8232.3(1).1-1

    Article  Google Scholar 

  8. Samanidou VF, Tsochatzis ED, Papadoyannis IN (2008) HPLC determination of cefotaxime and cephalexine residues in milk and cephalexine in veterinary formulation. Microchim Acta 160(4):471–475. https://doi.org/10.1007/s00604-007-0820-1

    Article  CAS  Google Scholar 

  9. Wang P, Yuan T, Hu J, Tan Y (2011) Determination of cephalosporin antibiotics in water samples by optimised solid phase extraction and high performance liquid chromatography with ultraviolet detector. Int J Environ Anal Chem 91(13):1267–1281. https://doi.org/10.1080/03067311003778649

    Article  CAS  Google Scholar 

  10. Karageorgou EG, Samanidou VF (2010) Application of ultrasound-assisted matrix solid-phase dispersion extraction to the HPLC confirmatory determination of cephalosporin residues in milk. J Sep Sci 33(17–18):2862–2871. https://doi.org/10.1002/jssc.201000385

    Article  CAS  PubMed  Google Scholar 

  11. Yavuz E, Tokalıoğlu Ş, Patat Ş (2018) Core–shell Fe3O4 polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples. Food Chem 263:232–239. https://doi.org/10.1016/j.foodchem.2018.04.134

    Article  CAS  PubMed  Google Scholar 

  12. Azodi-Deilami S, Najafabadi AH, Asadi E, Abdouss M, Kordestani D (2014) Magnetic molecularly imprinted polymer nanoparticles for the solid-phase extraction of paracetamol from plasma samples, followed its determination by HPLC. Microchim Acta 181:1823–1832. https://doi.org/10.1007/s00604-014-1230-9

    Article  CAS  Google Scholar 

  13. Socas-Rodríguez B, Hernández-Borges J, Salazar P, Martín M, Rodríguez-Delgado MÁ (2015) Core–shell polydopamine magnetic nanoparticles as sorbent in micro-dispersive solid-phase extraction for the determination of estrogenic compounds in water samples prior to high-performance liquid chromatography–mass spectrometry analysis. J Chromatogr A 1397:1–10. https://doi.org/10.1016/j.chroma.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  14. Rashidi Nodeh H, Wan Ibrahim WA, Ali I, Sanagi MM (2016) Development of magnetic graphene oxide adsorbent for the removal and preconcentration of as(III) and as(V) species from environmental water samples. Environ Sci Pollut Res 23(10):9759–9773. https://doi.org/10.1007/s11356-016-6137-z

    Article  CAS  Google Scholar 

  15. Chen L, Zhang M, Fu F, Li J, Lin Z (2018) Facile synthesis of magnetic covalent organic framework nanobeads and application to magnetic solid-phase extraction of trace estrogens from human urine. J Chromatogr A 1567:136–146. https://doi.org/10.1016/j.chroma.2018.06.066

    Article  CAS  PubMed  Google Scholar 

  16. Qin S-B, Fan Y-H, Mou X-X, Li X-S, Qi S-H (2018) Preparation of phenyl-modified magnetic silica as a selective magnetic solid-phase extraction adsorbent for polycyclic aromatic hydrocarbons in soils. J Chromatogr A 1568:29–37. https://doi.org/10.1016/j.chroma.2018.07.026

    Article  CAS  PubMed  Google Scholar 

  17. Xie Y, Zhao M, Hu Q, Cheng Y, Guo Y, Qian H, Yao W (2017) Selective detection of chloramphenicol in milk based on a molecularly imprinted polymer–surface-enhanced Raman spectroscopic nanosensor. J Raman Spectrosc 48(2):204–210. https://doi.org/10.1002/jrs.5034

    Article  CAS  Google Scholar 

  18. Raksawong P, Chullasat K, Nurerk P, Kanatharana P, Davis F, Bunkoed O (2017) A hybrid molecularly imprinted polymer coated quantum dot nanocomposite optosensor for highly sensitive and selective determination of salbutamol in animal feeds and meat samples. Anal Bioanal Chem 409(20):4697–4707. https://doi.org/10.1007/s00216-017-0466-8

    Article  CAS  PubMed  Google Scholar 

  19. Lata K, Sharma R, Naik L, Rajput YS, Mann B (2015) Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk. Food Chem 184:176–182. https://doi.org/10.1016/j.foodchem.2015.03.101

    Article  CAS  PubMed  Google Scholar 

  20. Bitas D, Samanidou V (2018) Molecularly imprinted polymers as extracting media for the chromatographic determination of antibiotics in milk. Molecules 23:316. https://doi.org/10.3390/molecules23020316

    Article  CAS  PubMed Central  Google Scholar 

  21. Huang S, Xu J, Zheng J, Zhu F, Xie L, Ouyang G (2018) Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Anal Bioanal Chem 410(17):3991–4014. https://doi.org/10.1007/s00216-018-1013-y

    Article  CAS  PubMed  Google Scholar 

  22. Zunngu SS, Madikizela LM, Chimuka L, Mdluli PS (2017) Synthesis and application of a molecularly imprinted polymer in the solid-phase extraction of ketoprofen from wastewater. C R Chim 20(5):585–591. https://doi.org/10.1016/j.crci.2016.09.006

    Article  CAS  Google Scholar 

  23. Li X, Mei X, Xu L, Shen X, Zhu W, Hong J, Zhou X (2016) Development and application of novel clonazepam molecularly imprinted coatings for stir bar sorptive extraction. J Colloid Interface Sci 468:183–191. https://doi.org/10.1016/j.jcis.2016.01.072

    Article  CAS  PubMed  Google Scholar 

  24. Du W, Zhang B, Guo P, Chen G, Chang C, Fu Q (2018) Facile preparation of magnetic molecularly imprinted polymers for the selective extraction and determination of dexamethasone in skincare cosmetics using HPLC. J Sep Sci 41(11):2441–2452. https://doi.org/10.1002/jssc.201701195

    Article  CAS  PubMed  Google Scholar 

  25. Kaewsuwan W, Kanatharana P, Bunkoed O (2017) Dispersive magnetic solid phase extraction using octadecyl coated silica magnetite nanoparticles for the extraction of tetracyclines in water samples. Int J Anal Chem 72(9):957–965. https://doi.org/10.1134/S1061934817090143

    Article  CAS  Google Scholar 

  26. Liu M, Li X, Li J, Wu Z, Wang F, Liu L, Tan X, Lei F (2017) Selective separation and determination of glucocorticoids in cosmetics using dual-template magnetic molecularly imprinted polymers and HPLC. J Colloid Interface Sci 504:124–133. https://doi.org/10.1016/j.jcis.2017.05.041

    Article  CAS  PubMed  Google Scholar 

  27. Eskandari H, Amirzehni M, Asadollahzadeh H, Hassanzadeh J, Eslami PA (2018) MIP-capped terbium MOF-76 for the selective fluorometric detection of cefixime after its preconcentration with magnetic graphene oxide. Sensors Actuators B Chem 275:145–154. https://doi.org/10.1016/j.snb.2018.08.050

    Article  CAS  Google Scholar 

  28. Gao R, Hao Y, Zhao S, Zhang L, Cui X, Liu D, Tang Y, Zheng Y (2014) Novel magnetic multi-template molecularly imprinted polymers for specific separation and determination of three endocrine disrupting compounds simultaneously in environmental water samples. RSC Adv 4(100):56798–56808. https://doi.org/10.1039/C4RA09825K

    Article  CAS  Google Scholar 

  29. Chen J, Bai L-Y, Liu K-F, Liu R-Q, Zhang Y-P (2014) Atrazine molecular imprinted polymers: comparative analysis by far-infrared and ultraviolet induced polymerization. Int J Mol Sci 15(1):574–587. https://doi.org/10.3390/ijms15010574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Thailand Research Fund (MRG6180049), the Higher Education Research Promotion and the Thailand’s Education Hub for Southern Region of ASEAN Countries Project Office of the Higher Education Commission, the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research and Innovation and Prince of Songkla University, Thailand (Grant No. SCI6202115N-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Opas Bunkoed.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurrokhimah, M., Nurerk, P., Kanatharana, P. et al. A nanosorbent consisting of a magnetic molecularly imprinted polymer and graphene oxide for multi-residue analysis of cephalosporins. Microchim Acta 186, 822 (2019). https://doi.org/10.1007/s00604-019-3985-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3985-5

Keywords

Navigation