Skip to main content
Log in

Aptamer-based colorimetric determination of early-stage apoptotic cells via the release of cytochrome c from mitochondria and by exploiting silver/platinum alloy nanoclusters as a peroxidase mimic

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An enzyme-free aptameric nanosensor is presented for apoptosis assay. The method exploits the peroxidase-mimicking property of silver/platinum alloy nanoclusters (Ag/Pt NCs) and uses a Cyt c binding ssDNA aptamer. An extra-strand polycytosine (C14) aptamer was designed as a template for synthesis of the Ag/Pt NCs. If cell lysate or purified Cyt c is placed in a polystyrene microplate, Cyt c will bind to the surface of the wells of a microtiterplate. On addition of Apt@Ag/PtNCs, it will associate with Cyt c and then catalytically oxidize colorless tetramethylbenzidine (TMB) in the presence of H2O2 to give a blue colored oxidation product (TMBox) due to the peroxidase-mimicking property of the Ag/Pt NCs. Under optimal conditions, the absorbance of TMB at 660 nm is linearly enhanced as the concentration of Cyt c increases from 50.0 fM to 500 nM, and the detection limit is ~10 pM. The assay is simple, sensitive and cost effective in that it is enzyme-free, antibody-free and label-free.

Schematic diagram of the apoptosis assay on the basis of microplate well-coated mitochondrial cytochrome c releasing by using Aptamer@Ag/Pt NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nur-E-Kamal A, Gross SR, Pan Z, Balklava Z, Ma J, Liu LF (2004) Nuclear translocation of cytochrome c during apoptosis. J Biol Chem 279:24911–24914

    Article  CAS  Google Scholar 

  2. Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    Article  CAS  Google Scholar 

  3. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495

    Article  CAS  Google Scholar 

  4. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    Article  CAS  Google Scholar 

  5. Radhakrishnan J, Origenes R, Littlejohn G, Nikolich S, Choi E, Smite S, Lamoureux L, Baetiong A, Shah M, Gazmuri RJ (2017) Plasma cytochrome c detection using a highly sensitive electrochemiluminescence enzyme-linked immunosorbent assay. Biomark Insights 12:1177271917746972

    Article  Google Scholar 

  6. Gao W, Pu Y, Luo KQ, Chang DC (2001) Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells. J Cell Sci 114:2855–2862

    CAS  PubMed  Google Scholar 

  7. Brown GC, Borutaite V (2008) Regulation of apoptosis by the redox state of cytochrome c. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1777:877–881

    Article  CAS  Google Scholar 

  8. Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 9:73

    Google Scholar 

  9. Chandra D, Liu JW, Tang DG (2002) Early mitochondrial activation and cytochrome c up-regulation during apoptosis. J Biol Chem 277:50842–50854

    Article  CAS  Google Scholar 

  10. Liu K, Shu D, Song N, Gai Z, Yuan Y, Li J, Li M, Guo S, Peng J, Hong H (2012) The role of cytochrome c on apoptosis induced by Anagrapha falcifera multiple nuclear polyhedrosis virus in insect Spodoptera litura cells. PLoS One 7:e40877

    Article  CAS  Google Scholar 

  11. Torkzadeh-Mahani M, Ataei F, Nikkhah M, Hosseinkhani S (2012) Design and development of a whole-cell luminescent biosensor for detection of early-stage of apoptosis. Biosens Bioelectron 38:362–368

    Article  CAS  Google Scholar 

  12. Noori AR, Hosseini ES, Nikkhah M, Hosseinkhani S (2018) Apoptosome formation upon overexpression of native and truncated Apaf-1 in cell-free and cell-based systems. Arch Biochem Biophys 642:46–51

    Article  CAS  Google Scholar 

  13. Akbari-Birgani S, Hosseinkhani S, Mollamohamadi S, Baharvand H (2014) Delay in apoptosome formation attenuates apoptosis in mouse embryonic stem cell differentiation. J Biol Chem 289:16905–16913

    Article  CAS  Google Scholar 

  14. Bin N, Li W, Yin X, Huang X, Cai Q (2016) Electrochemiluminescence aptasensor of TiO2/CdS: Mn hybrids for ultrasensitive detection of cytochrome c. Talanta 160:570–576

    Article  CAS  Google Scholar 

  15. Ghayyem S, Faridbod F (2018) A fluorescent aptamer/carbon dots based assay for cytochrome c protein detection as a biomarker of cell apoptosis. Methods and applications in fluorescence 7:015005

    Article  Google Scholar 

  16. Amin RM, Elfeky SA, Verwanger T, Krammer B (2017) Fluorescence-based CdTe nanosensor for sensitive detection of cytochrome C. Biosens Bioelectron 98:415–420

    Article  CAS  Google Scholar 

  17. Chen TT, Tian X, Liu CL, Ge J, Chu X, Li Y (2015) Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor. J Am Chem Soc 137:982–989

    Article  CAS  Google Scholar 

  18. Shamsipur M, Molaabasi F, Hosseinkhani S, Rahmati F (2016) Detection of early stage apoptotic cells based on label-free cytochrome c assay using bioconjugated metal nanoclusters as fluorescent probes. Anal Chem 88:2188–2197

    Article  CAS  Google Scholar 

  19. Shamsipur M, Pashabadi A, Molaabasi F, Hosseinkhani S (2017) Impedimetric monitoring of apoptosis using cytochrome-aptamer bioconjugated silver nanocluster. Biosens Bioelectron 90:195–202

    Article  CAS  Google Scholar 

  20. Chattoraj S, Amin MA, Bhattacharyya K (2016) Cytochrome c-capped fluorescent gold Nanoclusters: imaging of live cells and delivery of cytochrome c. ChemPhysChem 17:2088–2095

    Article  CAS  Google Scholar 

  21. Pur MR, Hosseini M, Faridbod F, Ganjali MR, Hosseinkhani S (2018) Early detection of cell apoptosis by a cytochrome C label-free electrochemiluminescence aptasensor. Sensors Actuators B Chem 257:87–95

    Article  Google Scholar 

  22. Pandiaraj M, Madasamy T, Gollavilli PN, Balamurugan M, Kotamraju S, Rao VK, Bhargava K, Karunakaran C (2013) Nanomaterial-based electrochemical biosensors for cytochrome c using cytochrome c reductase. Bioelectrochemistry 91:1–7

    Article  CAS  Google Scholar 

  23. Santra S, Kaittanis C, Perez JM (2010) Cytochrome C encapsulating theranostic nanoparticles: a novel bifunctional system for targeted delivery of therapeutic membrane-impermeable proteins to tumors and imaging of cancer therapy. Mol Pharm 7:1209–1222

    Article  CAS  Google Scholar 

  24. Hosseini M, Mohammadi S, Borghei YS, Ganjali MR Detection of p53 gene mutation (single-base mismatch) using a fluorescent silver nanoclusters. J Fluoresc 27:1443–1448

    Article  CAS  Google Scholar 

  25. Borghei YS, Hosseini M, Ganjali MR, Ju H (2018) Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles. Microchim Acta 185:286

    Article  Google Scholar 

  26. Borghei YS, Hosseini M, Ganjali MR (2018) Oxidase-like catalytic activity of Cys-AuNCs upon visible light irradiation and its application for visual miRNA detection. Sensors Actuators B Chem 273:1618–1626

    Article  CAS  Google Scholar 

  27. Borghei YS, Hosseini M, Ganjali MR (2017) Detection of large deletion in human BRCA1 gene in human breast carcinoma MCF-7 cells by using DNA-silver Nanoclusters. Methods and applications in fluorescence 6:015001

    Article  Google Scholar 

  28. Darabdhara G, Boruah PK, Das MR (2019) Colorimetric determination of glucose in solution and via the use of a paper strip by exploiting the peroxidase and oxidase mimicking activity of bimetallic cu-Pd nanoparticles deposited on reduced graphene oxide, graphitic carbon nitride, or MoS 2 nanosheets. Microchim Acta 186:13

    Article  Google Scholar 

  29. Wang YW, Liu Q, Wang L, Tang S, Yang HH, Song H (2019) A colorimetric mercury (II) assay based on the hg (II)-stimulated peroxidase mimicking activity of a nanocomposite prepared from graphitic carbon nitride and gold nanoparticles. Microchim Acta 186:7

    Article  Google Scholar 

  30. Song W, Yin W, Zhang Z, He P, Yang X, Zhang X (2019) A DNA functionalized porphyrinic metal-organic framework as a peroxidase mimicking catalyst for amperometric determination of the activity of T4 polynucleotide kinase. Microchim Acta 186:149

    Article  Google Scholar 

  31. Zheng C, Zheng AX, Liu B, Zhang XL, He Y, Li J, Yang HH, Chen G (2014) One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun 50:13103–13106

    Article  CAS  Google Scholar 

  32. Borghei YS, Hosseini M, Ganjali MR (2018) Visual detection of miRNA using peroxidase-like catalytic activity of DNA-CuNCs and methylene blue as indicator. Clin Chim Acta 483:119–125

    Article  CAS  Google Scholar 

  33. Borghei YS, Hosseini M, Ganjali MR (2017) Fluorometric determination of microRNA via FRET between silver nanoclusters and CdTe quantum dots. Microchim Acta 184:4713–4721

    Article  CAS  Google Scholar 

  34. Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184:323–342

    Article  CAS  Google Scholar 

  35. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  Google Scholar 

  36. Sha H, Zhang Y, Wang Y, Ke H, Xiong X, Xue H, Jia N (2019) Electroluminescent aptasensor based on RuSiO2 nanoparticles for detection cytochrome c using ferrocene as quenching probe. Biosens Bioelectron 132:203–209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work was provided by National Institute for Medical Research Development (NIMAD, Grant No: 957982). The authors are grateful to the Iran National Elites Foundation for support of Yasaman-Sadat Borghei as a post-doc fellow in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Hosseinkhani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borghei, YS., Hosseinkhani, S. Aptamer-based colorimetric determination of early-stage apoptotic cells via the release of cytochrome c from mitochondria and by exploiting silver/platinum alloy nanoclusters as a peroxidase mimic. Microchim Acta 186, 845 (2019). https://doi.org/10.1007/s00604-019-3977-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3977-5

Keywords

Navigation