Skip to main content
Log in

Chemiluminescent determination of L-cysteine with the lucigenin-carbon dot system

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This work describes a new chemiluminescence (CL) system that is composed of lucigenin and carbon dots (CDs). The CDs display absorption peak at 260 nm and fluorescence with a emission peak centered at 524 nm (photo-excited at 470 nm). They were synthesized by hydrothermal treatment of starch and characterized by Fourier transform infrared spectroscopy, high resolution transmission electron microscopy, UV-vis absorption spectra and fluorescence spectra. The effects of oxygen and free radical scavengers on the CL system and on the CL spectra were investigated to elucidate the CL mechanism. It is found that L-cysteine (Cys) enhances the blue CL of the lucigenin-CD system by 59%. The finding was used to design a method for the determination of Cys. CL increases linearly in the 10.0 to 100 μM Cys concentration range, and the detection limit is 8.8 μM (at an S/N ratio of 3). The assay is highly selective over other amino acids. Conceivably, this novel CL system paves the way to numerous new assays based on the use of lucigenin.

Schematic representation of the carbon dots enhanced lucigenin chemiluminesence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cao F, Huang Y, Wang F, Kwak D, Dong Q, Song D, Zeng J, Lei Y (2018) A high-performance electrochemical sensor for biologically meaningful L-cysteine based on a new nanostructured L-cysteine electrocatalyst. Anal Chim Acta 1019:103–110. https://doi.org/10.1016/j.aca.2018.02.048

    Article  CAS  PubMed  Google Scholar 

  2. Singh M, Jaiswal N, Tiwari I, Foster CW, Banks CE (2018) A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. J Electroanal Chem 829:230–240. https://doi.org/10.1016/j.jelechem.2018.09.018

    Article  CAS  Google Scholar 

  3. Forgacsova A, Galba J, Mojzisova J, Mikus P, Piestansky J, Kovac A (2019) Ultra-high performance hydrophilic interaction liquid chromatography-triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinyl-glycine and glutathione in rat plasma. J Pharm Biomed Anal 164:442–451. https://doi.org/10.1016/j.jpba.2018.10.053

    Article  CAS  PubMed  Google Scholar 

  4. Diuzheva A, Balogh J, Studenyak Y, Cziáky Z, Jekő J (2019) A salting-out assisted liquid-liquid microextraction procedure for determination of cysteine followed by spectrophotometric detection. Talanta 194:446–451. https://doi.org/10.1016/j.talanta.2018.10.026

    Article  CAS  PubMed  Google Scholar 

  5. Wu J, Ran P, Zhu S, Mo F, Wang C, Fu Y (2019) A highly sensitive electrochemiluminescence sensor for the detection of l-cysteine based on the rhombus-shaped rubrene microsheets and platinum nanoparticles. Sens Actuator B-Chem 278:97–102. https://doi.org/10.1016/j.snb.2018.09.066

    Article  CAS  Google Scholar 

  6. Gao W, Qi W, Lai J, Qi L, Majeed S, Xu G (2015) Thiourea dioxide as a unique eco-friendly coreactant for luminol chemiluminescence in the sensitive detection of luminol, thiourea dioxide and cobalt ions. Chem Commun 51:1620–1623. https://doi.org/10.1039/c4cc08904a

    Article  CAS  Google Scholar 

  7. Tang Y, Su Y, Yang N, Zhang L, Lv Y (2014) Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem 86:4528–4535. https://doi.org/10.1021/ac5005162

    Article  CAS  PubMed  Google Scholar 

  8. Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH (2014) Strong enhancement of the chemiluminescence of the cerium(IV)-thiosulfate reaction by carbon dots, and its application to the sensitive determination of dopamine. Microchim Acta 181:671–677. https://doi.org/10.1007/s00604-014-1172-2

    Article  CAS  Google Scholar 

  9. Hun X, Xu Y, Bai L (2014) A chemiluminescence assay for L-histidine based on controlled DNAzyme catalytic reactions on magnetic microparticles. Microchim Acta 182:565–570. https://doi.org/10.1007/s00604-014-1359-6

    Article  CAS  Google Scholar 

  10. Malejko J, Godlewska-Zylkiewicz B, Kojlo A (2010) A novel flow-injection method for the determination of Pt(IV) in environmental samples based on chemiluminescence reaction of lucigenin and biosorption. Talanta 81:1719–1724. https://doi.org/10.1016/j.talanta.2010.03.029

    Article  CAS  PubMed  Google Scholar 

  11. Saqib M, Lou B, Halawa MI, Kitte SA, Liu Z, Xu G (2017) Chemiluminescence of lucigenin–Allantoin and its application for the detection of Allantoin. Anal Chem 89:1863–1869. https://doi.org/10.1021/acs.analchem.6b04271

    Article  CAS  PubMed  Google Scholar 

  12. He Y, Cui H (2012) Synthesis of dendritic platinum nanoparticles/lucigenin/reduced graphene oxide hybrid with chemiluminescence activity. Chem 18:4823–4826. https://doi.org/10.1002/chem.201104044

    Article  CAS  Google Scholar 

  13. Jiang H, Ju H (2007) Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal Chem 79:6690–6696

    Article  CAS  Google Scholar 

  14. Beiraghi A, Najibi-Gehraz SA (2017) Carbon dots-modified silver nanoparticles as a new colorimetric sensor for selective determination of cupric ions. Sens Actuator B-Chem 253:342–351. https://doi.org/10.1016/j.snb.2017.06.049

    Article  CAS  Google Scholar 

  15. Xu H, Zhang K, Liu Q, Liu Y, Xie M (2017) Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots. Microchim Acta 184:1199–1206. https://doi.org/10.1007/s00604-017-2099-1

    Article  CAS  Google Scholar 

  16. Zhuang Z, Lin H, Zhang X, Qiu F, Yang H (2016) A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Microchim Acta 183:2807–2814. https://doi.org/10.1007/s00604-016-1931-3

    Article  CAS  Google Scholar 

  17. Bhaisare ML, Talib A, Khan MS, Pandey S, Wu H-F (2015) Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. Microchim Acta 182:2173–2181. https://doi.org/10.1007/s00604-015-1541-5

    Article  CAS  Google Scholar 

  18. Qu S, Wang X, Lu Q, Liu X, Wang L (2012) A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem 51:12215–12218. https://doi.org/10.1002/anie.201206791

    Article  CAS  Google Scholar 

  19. Gong X, Lu W, Paau MC, Hu Q, Wu X, Shuang S, Dong C, Choi MM (2015) Facile synthesis of nitrogen-doped carbon dots for Fe(3+) sensing and cellular imaging. Anal Chim Acta 861:74–84. https://doi.org/10.1016/j.aca.2014.12.045

    Article  CAS  PubMed  Google Scholar 

  20. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem 49:6726–6744. https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

  21. Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G, Zhou B, Harruff BA, Kermarrec F, Sun YP (2009) Photoinduced electron transfers with carbon dots. Chem Commun:3774–3776. https://doi.org/10.1039/b906252a

  22. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun:5118–5120. https://doi.org/10.1039/b907612c

  23. Dong Y, Su M, Chen P, Sun H (2014) Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamol, L-cysteine and glutathione. Microchim Acta 182:1071–1077. https://doi.org/10.1007/s00604-014-1427-y

    Article  CAS  Google Scholar 

  24. Guo Y, Li B (2015) Carbon dots-initiated luminol chemiluminescence in the absence of added oxidant. Carbon 82:459–469. https://doi.org/10.1016/j.carbon.2014.10.089

    Article  CAS  Google Scholar 

  25. Dou X, Lin Z, Chen H, Zheng Y, Lu C, Lin JM (2013) Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method. Chem Commun 49:5871–5873. https://doi.org/10.1039/c3cc41145a

    Article  CAS  Google Scholar 

  26. Zhao L, Di F, Wang D, Guo LH, Yang Y, Wan B, Zhang H (2013) Chemiluminescence of carbon dots under strong alkaline solutions: a novel insight into carbon dot optical properties. Nanoscale 5:2655–2658. https://doi.org/10.1039/c3nr00358b

    Article  CAS  PubMed  Google Scholar 

  27. Wang DM, Gao MX, Gao PF, Yang H, Huang CZ (2013) Carbon Nanodots-catalyzed Chemiluminescence of Luminol: a singlet oxygen-induced mechanism. J Phys Chem C 117:19219–19225. https://doi.org/10.1021/jp404973b

    Article  CAS  Google Scholar 

  28. Chen W, Li D, Tian L, Xiang W, Wang T, Hu W, Hu Y, Chen S, Chen J, Dai Z (2018) Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem 20:4438–4442. https://doi.org/10.1039/c8gc02106f

    Article  CAS  Google Scholar 

  29. Wu ZL, Gao MX, Wang TT, Wan XY, Zheng LL, Huang CZ (2014) A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale 6:3868–3874. https://doi.org/10.1039/c3nr06353d

    Article  CAS  PubMed  Google Scholar 

  30. Jia X, Li J, Wang E (2012) One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4:5572–5575. https://doi.org/10.1039/c2nr31319g

    Article  CAS  PubMed  Google Scholar 

  31. Gao W, Qi L, Liu Z, Majeed S, Kitte SA, Xu G (2017) Efficient lucigenin/thiourea dioxide chemiluminescence system and its application for selective and sensitive dopamine detection. Sens Actuator B 238:468–472. https://doi.org/10.1016/j.snb.2016.07.093

    Article  CAS  Google Scholar 

  32. Chi Q, Chen W, He Z (2015) Mechanism of alcohol-enhanced lucigenin chemiluminescence in alkaline solution. Luminescence 30:990–995. https://doi.org/10.1002/bio.2849

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the support from National Natural Science Foundation of China (No. 21675148, 21674066, 21874126 and 21804127), the National Key Research and Development Program of China (No. 2016YFA0201300), the Chinese Academy of Sciences (CAS)-the Academy of Sciences for the Developing World (TWAS) President’s Fellowship Program, and the Ministry of Education of Liaoning Province, China (No. L2016022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Han, Jianping Li or Guobao Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Lan, Y., Yuan, F. et al. Chemiluminescent determination of L-cysteine with the lucigenin-carbon dot system. Microchim Acta 187, 50 (2020). https://doi.org/10.1007/s00604-019-3965-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3965-9

Keywords

Navigation