Skip to main content
Log in

Phosphorene nanocomposite with high environmental stability and antifouling capability for simultaneous sensing of clenbuterol and ractopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A series of phosphorene (BP) nanocomposites was prepared to realize simultaneous electrochemical determination of clenbuterol (CLB) and ractopamine (RAC). CLB and RAC are the most commonly used β-agonists in animal-derived food. The BP nanohybrid was obtained by co-decoration with both mono(6-mercapto-6-deoxy)-β-cyclodextrin and poly(3,4-ethylenedioxythiophene) nanoparticles. It displays high stability, antifouling capability, a large electrochemical active surface and good electrochemical response. The electrochemical assisted antifouling strategy was selected by further eliminating the fouling of the electrode surface using continuous cyclic voltammetry. The electrode was employed for electrochemical sensing of CLB and RAC at typical peak voltages of 0.8 and 1.0 V (vs. SCE). Responses are linear in the 0.3–90 μM concentration range for CLB, and from 0.3 to 9.4 μM for RAC under optimal conditions. The limit of detection are 0.14 and 0.12 μM, respectively. The sensor was employed for simultaneous determination of CLB and RAC in (spiked) beef, feed and bovine serum samples with acceptable recoveries.

An electrochemically assisted anti-fouling method for simultaneous voltammetric nanosensing of clenbuterol (CLB) and ractopamine (RAC) in edible cattle product samples using high-stable and anti-foul phosphorene (BP) co-decorated with mono(6-mercapto-6-deoxy)-β-cyclodextrin (S-β-CD) and poly(3,4-ethylenedioxythiophene) (PEDOTNPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu LM, Luo K, Xia J, Xu GM, Wu CH, Han JJ, Lai WH (2017) Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosens Bioelectron 91:95–103. https://doi.org/10.1016/j.bios.2016.12.030

    Article  CAS  PubMed  Google Scholar 

  2. Pleadin J, Vulić A, Perši N, Vahčić N (2010) Clenbuterol residues in pig muscle after repeat administration in a growth-promoting dose. Meat Sci 86:733–737. https://doi.org/10.1016/j.meatsci.2010.06.013

    Article  CAS  PubMed  Google Scholar 

  3. Zhai H, Liu Z, Chen Z, Liang Z, Su Z, Wang S (2015) A sensitive electrochemical sensor with sulfonated graphene sheets/oxygen-functionalized multi-walled carbon nanotubes modified electrode for the detection of clenbuterol. Sens Atuators B 210:483–490. https://doi.org/10.1016/j.snb.2014.12.121

    Article  CAS  Google Scholar 

  4. Zhang D, Liu Q (2016) Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron 75:273–284. https://doi.org/10.1016/j.bios.2015.08.037

    Article  CAS  PubMed  Google Scholar 

  5. Broza YY, Haick H (2013) Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine-UK 8:785–806. https://doi.org/10.2217/nnm.13.64

    Article  CAS  Google Scholar 

  6. Yan F, Zhang Y, Zhang S, Zhao J, Liu S, He L, Zhang Z (2015) Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Microchim Acta 182:855–862. https://doi.org/10.1007/s00604-014-1399-y

    Article  CAS  Google Scholar 

  7. Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens Bioelectron 76:195–212. https://doi.org/10.1016/j.bios.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  8. Yang Y, Zhang H, Huang C, Yang D, Jia N (2017) Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS2-au-PEI-hemin layered nanocomposites. Biosens Bioelectron 89:461–467. https://doi.org/10.1016/j.bios.2016.04.019

    Article  CAS  PubMed  Google Scholar 

  9. Yola ML, Atar N (2019) Simultaneous determination of β-agonists on hexagonal boron nitride nanosheets/multi-walled carbon nanotubes nanocomposite modified glassy carbon electrode. Mater Sci Eng C 96:669–676. https://doi.org/10.1016/j.bios.2016.04.019

    Article  CAS  Google Scholar 

  10. Ge Y, Camarada MB, Xu L, Qu M, Liang H, Zhao E, Wen Y (2018) A highly stable black phosphorene nanocomposite for voltammetric detection of clenbuterol. Microchim Acta 185:566. https://doi.org/10.1007/s00604-018-3084-z

    Article  CAS  Google Scholar 

  11. Lu S, Wen Y, Bai L, Liu G, Chen Y, Du H, Wang X (2015) pH-controlled voltammetric behaviors and detection of phytohormone 6-benzylaminopurine using MWCNT/GCE. J Electroanal Chem 750:89–99. https://doi.org/10.1016/j.jelechem.2015.05.019

    Article  CAS  Google Scholar 

  12. Lu S, Bai L, Wen Y, Li M, Yan D, Zhang R, Chen K (2015) Water-dispersed carboxymethyl cellulose-montmorillonite-single walled carbon nanotube composite with enhanced sensing performance for simultaneous voltammetric determination of two trace phytohormones. J Solid State Electrochem 19:2023–2037. https://doi.org/10.1007/s10008-014-2695-5

    Article  CAS  Google Scholar 

  13. Xiang Y, Camarada MB, Wen Y, Wu H, Chen J, Li M, Liao X (2018) Simple voltammetric analyses of ochratoxin a in food samples using highly-stable and antifoulinging black phosphorene nanosensor. Electrochim Acta 282:490–498. https://doi.org/10.1016/j.electacta.2018.06.055

    Article  CAS  Google Scholar 

  14. Hanlon D, Backes C, Doherty E, Cucinotta CS, Berner NC, Boland C, Zhang S (2015) Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat Commun 6:8563. https://doi.org/10.1038/ncomms9563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang J, Ding W, Zhang Z, Xu J, Wen Y (2016) Preparation of black phosphorus-PEDOT: PSS hybrid semiconductor composites with good film-forming properties and environmental stability in water containing oxygen. RSC Adv 6:76174–76182. https://doi.org/10.1039/C6RA14762C

    Article  CAS  Google Scholar 

  16. Abate Y, Akinwande D, Gamage S, Wang H, Snure M, Poudel N, Cronin SB (2018) Recent progress on stability and passivation of black phosphorus. Adv Mater 30:1704749. https://doi.org/10.1002/adma.201704749

    Article  CAS  Google Scholar 

  17. Li Q, Zhou Q, Shi L, Chen Q, Wang J (2019) Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J Mater Chem A 7:4291–4312. https://doi.org/10.1039/C8TA10306B

    Article  CAS  Google Scholar 

  18. Ryder CR, Wood JD, Wells SA, Yang Y, Jariwala D, Marks TJ, Hersam MC (2016) Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat Chem 8:597. https://doi.org/10.1038/nchem.2505

    Article  CAS  PubMed  Google Scholar 

  19. Guo Z, Chen S, Wang Z, Yang Z, Liu F, Xu Y, Chu PK (2017) Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv Mater 29:1703811. https://doi.org/10.1002/adma.201703811

    Article  CAS  Google Scholar 

  20. Lei W, Liu G, Zhang J, Liu M (2017) Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem Soc Rev 46:3492–3509. https://doi.org/10.1039/C7CS00021A

    Article  CAS  PubMed  Google Scholar 

  21. Abellán G, Lloret V, Mundloch U, Marcia M, Neiss C, Görling A, Hirsch A (2016) Noncovalent functionalization of black phosphorus. Angew Chem Int Ed 55:14557–14562. https://doi.org/10.1002/anie.201604784

    Article  CAS  Google Scholar 

  22. Zhao Y, Wang H, Huang H, Xiao Q, Xu Y, Guo Z, Yu XF (2016) Surface coordination of black phosphorus for robust air and water stability. Angew Chem Int Ed 55:5003–5007. https://doi.org/10.1002/anie.201512038

    Article  CAS  Google Scholar 

  23. Zhang Z, Li Y, Xu J, Wen Y (2018) Electropolymerized molecularly imprinted polypyrrole decorated with black phosphorene quantum dots onto poly (3, 4-ethylenedioxythiophene) nanorods and its voltammetric sensing of vitamin C. J Electroanal Chem 814:153–160. https://doi.org/10.1016/j.jelechem.2018.02.059

    Article  CAS  Google Scholar 

  24. Li X, Niu X, Zhao W, Chen W, Yin C, Men Y, Sun W (2018) Black phosphorene and PEDOT: PSS-modified electrode for electrochemistry of hemoglobin. Electrochem Commun 86:68–71. https://doi.org/10.1016/j.elecom.2017.11.017

    Article  CAS  Google Scholar 

  25. Niu X, Weng W, Yin C, Niu Y, Li G, Dong R, Sun W (2018) Black phosphorene modified glassy carbon electrode for the sensitive voltammetric detection of rutin. J Electroanal Chem 811:78–83. https://doi.org/10.1016/j.jelechem.2018.01.038

    Article  CAS  Google Scholar 

  26. Wen Y, Xu J (2017) Scientific importance of water-Processable PEDOT–PSS and preparation, challenge and new application in sensors of its film electrode: a review. J Polym Sci A Polym Chem 55:1121–1150. https://doi.org/10.1002/pola.28482

    Article  CAS  Google Scholar 

  27. Yao Y, Zhang L, Xu J, Wang X, Duan X, Wen Y (2014) Rapid and sensitive stripping voltammetric analysis of methyl parathion in vegetable samples at carboxylic acid-functionalized SWCNTs–β-cyclodextrin modified electrode. J Electroanal Chem 713:1–8. https://doi.org/10.1016/j.jelechem.2013.11.024

    Article  CAS  Google Scholar 

  28. Wen Y, Xu J, Li D, Liu M, Kong F, He H (2012) A novel electrochemical biosensing platform based on poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) composites. Synth Met 162:1308–1314. https://doi.org/10.1016/j.synthmet.2012.03.004

    Article  CAS  Google Scholar 

  29. Wen Y, Xu J, He H, Lu B, Li Y, Dong B (2009) Electrochemical polymerization of 3, 4-ethylenedioxythiophene in aqueous micellar solution containing biocompatible amino acid-based surfactant. J Electroanal Chem 634:49–58. https://doi.org/10.1016/j.jelechem.2009.07.012

    Article  CAS  Google Scholar 

  30. Kayser LV, Lipomi DJ (2019) Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv Mater 31:1806133. https://doi.org/10.1002/adma.201806133

    Article  CAS  Google Scholar 

  31. Colleran JJ, Breslin CB (2012) Simultaneous electrochemical detection of the catecholamines and ascorbic acid at PEDOT/S-β-CD modified gold electrodes. J Electroanal Chem 667:30–37. https://doi.org/10.1016/j.jelechem.2011.12.020

    Article  CAS  Google Scholar 

  32. Wu C, Sun D, Li Q, Wu K (2012) Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide. Sensors Actuators B Chem 168:178–184. https://doi.org/10.1016/j.snb.2012.03.084

    Article  CAS  Google Scholar 

  33. Zhang L, Wang Q, Qi Y, Li L, Wang S, Wang X (2019) An ultrasensitive sensor based on polyoxometalate and zirconium dioxide nanocomposites hybrids material for simultaneous detection of toxic clenbuterol and ractopamine. Sensors Actuators B Chem 288:347–355. https://doi.org/10.1016/j.snb.2019.03.033

    Article  CAS  Google Scholar 

  34. Bai W, Huang H, Li Y, Zhang H, Liang B, Guo R, Zhang Z (2014) Direct preparation of well-dispersed graphene/gold nanorod composites and their application in electrochemical sensors for determination of ractopamine. Electrochim Acta 117:322–328. https://doi.org/10.1016/j.electacta.2013.11.175

    Article  CAS  Google Scholar 

  35. Xie L, Ya Y, Wei L (2017) Mesopores cellular foam-based electrochemical sensor for sensitive determination of ractopamine. Int J Electrochem Sci 12:9714–9724. https://doi.org/10.20964/2017.10.34

    Article  CAS  Google Scholar 

  36. Liu Z, Zhou Y, Wang Y, Cheng Q, Wu K (2012) Enhanced oxidation and detection of toxic ractopamine using carbon nanotube film-modified electrode. Electrochim Acta 74:139–144. https://doi.org/10.1016/j.electacta.2012.04.041

    Article  CAS  Google Scholar 

  37. Deng Y, Wu J, Tu K, Xu H, Ma L, Chen J, Qian S (2017) Fabrication of an electrochemical sensor based on a graphene/au composite for the determination of clenbuterol in beef samples. Int J Electrochem Sci 12:6108–6117. https://doi.org/10.20964/2017.07.19

    Article  CAS  Google Scholar 

  38. Lv CZ, Xun Y, Cao Z, Xie JL, Li D, Liu G, Tan SZ (2017) Sensitive determination of toxic Clenbuterol in pig meat and pig liver based on a carbon nanopolymer composite. Food Anal Methods 10:2252–2261. https://doi.org/10.1007/s12161-017-0796-3

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Beef Cattle Industry Technology & System (CARS-37), National Natural Science Foundation of China (51662014, 51962007, 31660492), Outstanding Young Talent Program of Jiangxi Province (20171BCB23042), Youth project of Natural Science Foundation of JiangxiProvince (20192ACBL21015, 20192BAB204020), Development and Nutrition of Feed for Beef Cattle in Guangchang County (09005392), Jiangxi Provincial Department of Education (GJJ170260).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanjiao Xu or Yangping Wen.

Ethics declarations

Conflict of interest

The author(s) declarethat they have no competing interests .

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1) An electrochemically assisted anti-foul strategy was designed.

2) High-stable and anti-foul BP nanohybrid was prepared.

3) BP nanohybrid co-decorated with PEDOTNPs and S-β-CD was prepared.

4) BP nanohybrid platform for simultaneous voltammetric sensing of CLB and RAC in edible cattle product samples was fabricated.

Electronic supplementary material

ESM 1

(DOCX 1.76 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Qu, M., Xu, L. et al. Phosphorene nanocomposite with high environmental stability and antifouling capability for simultaneous sensing of clenbuterol and ractopamine. Microchim Acta 186, 836 (2019). https://doi.org/10.1007/s00604-019-3908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3908-5

Keywords

Navigation