Skip to main content
Log in

Multiplexed fluorometric determination for three microRNAs in acute myocardial infarction by using duplex-specific nuclease and MoS2 nanosheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Circulating microRNAs are of diagnostic value for acute myocardial infarction (AMI). This study describes a fluorometric assay for multiplexed detection of the AMI biomarkers microRNA-499, microRNA-133a and microRNA-1. The assay involves the following two steps: (a) duplex-specific nuclease (DSN)-mediated signal amplification using aptamer-based sensor; (b) MoS2 nanosheets-based multiplexed fluorometric signal detection, and fluorometric signals have excitation/emission maxima at 492/518 nm for microRNA-499, 565/580 nm for microRNA-133a and 649/663 nm for microRNA-1. The assay has detection limits of around 100 fM for all three microRNAs. The assay is highly specific and rapid. It demonstrates that the expressions of microRNA-499, microRNA-133a and microRNA-1 are significantly higher in AMI patients. The ROC curves allow a clear distinction to be made between AMI group and non-AMI group.

Schematic representation of a multiplexed fluorometric method based on duplex-specific nuclease (DSN)-mediated signal amplification and MoS2 nanosheets-based fluorometric signal detection (DSN-MoS2) for rapid, sensitive and specific detection of microRNAs in AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson JL, Morrow DA (2017) Acute myocardial infarction. N Engl J Med 376(21):2053–2064. https://doi.org/10.1056/NEJMra1606915

    Article  CAS  PubMed  Google Scholar 

  2. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, Gencer B, Hasenfuss G, Kjeldsen K, Lancellotti P, Landmesser U, Mehilli J, Mukherjee D, Storey RF, Windecker S (2016) 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the Management of Acute Coronary Syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 37(3):267–315. https://doi.org/10.1093/eurheartj/ehv320

    Article  CAS  PubMed  Google Scholar 

  3. Nagele P, Brown F, Gage BF, Gibson DW, Miller JP, Jaffe AS, Apple FS, Scott MG (2013) High-sensitivity cardiac troponin T in prediction and diagnosis of myocardial infarction and long-term mortality after noncardiac surgery. Am Heart J 166(2):325–332.e321. https://doi.org/10.1016/j.ahj.2013.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shiozaki M, Inoue K, Suwa S, Lee CC, Chikata Y, Ishiura J, Kimura Y, Fukuda K, Tamura H, Fujiwara Y, Sumiyoshi M, Daida H (2017) Utility of the 0-hour/1-hour high-sensitivity cardiac troponin T algorithm in Asian patients with suspected non-ST elevation myocardial infarction. Int J Cardiol 249:32–35. https://doi.org/10.1016/j.ijcard.2017.09.009

    Article  PubMed  Google Scholar 

  5. Wang J, Chen J, Sen S (2016) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231(1):25–30. https://doi.org/10.1002/jcp.25056

    Article  CAS  PubMed  Google Scholar 

  6. Berindan-Neagoe I, Monroig PC, Pasculli B, Calin GA (2014) MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin 64(5):311–336. https://doi.org/10.3322/caac.21244

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kalla R, Ventham NT, Kennedy NA, Quintana JF, Nimmo ER, Buck AH, Satsangi J (2015) MicroRNAs: new players in IBD. Gut 64(3):504–517. https://doi.org/10.1136/gutjnl-2014-307891

    Article  CAS  PubMed  Google Scholar 

  8. Sita-Lumsden A, Dart DA, Waxman J, Bevan CL (2013) Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer 108(10):1925–1930. https://doi.org/10.1038/bjc.2013.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu A, Chen S-J, Chang Y-S, Chen H-C, Chu P-H (2014) Systemic approach to identify serum microRNAs as potential biomarkers for acute myocardial infarction. Biomed Res Int 2014:418628–418628. https://doi.org/10.1155/2014/418628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kondkar AA, Abu-Amero KK (2015) Utility of circulating microRNAs as clinical biomarkers for cardiovascular diseases. Biomed Res Int 2015:821823–821823. https://doi.org/10.1155/2015/821823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang L, Chen X, Su T, Li H, Huang Q, Wu D, Yang C, Han Z (2015) Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction. J Thorac Dis 7(3):303–308. https://doi.org/10.3978/j.issn.2072-1439.2015.02.05

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW (2013) Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J Transl Med 11:222–222. https://doi.org/10.1186/1479-5876-11-222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li J, Dong X, Wang Z, Wu J (2014) MicroRNA-1 in cardiac diseases and cancers. Korean J Physiol Pharmacol 18(5):359–363. https://doi.org/10.4196/kjpp.2014.18.5.359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fiedler SD, Carletti MZ, Christenson LK (2010) Quantitative RT-PCR methods for mature microRNA expression analysis. Methods Mol Biol 630:49–64. https://doi.org/10.1007/978-1-60761-629-0_4

    Article  CAS  PubMed  Google Scholar 

  15. Aw SS, Tang MX, Teo YN, Cohen SM (2016) A conformation-induced fluorescence method for microRNA detection. Nucleic Acids Res 44(10):e92–e92. https://doi.org/10.1093/nar/gkw108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sempere LF (2014) Fully automated fluorescence-based four-color multiplex assay for co-detection of microRNA and protein biomarkers in clinical tissue specimens. Methods Mol Biol 1211:151–170. https://doi.org/10.1007/978-1-4939-1459-3_13

    Article  CAS  PubMed  Google Scholar 

  17. Lan L, Chen D, Yao Y, Peng X, Wu J, Li Y, Ping J, Ying Y (2018) Phase-dependent fluorescence quenching efficiency of MoS2 Nanosheets and their applications in multiplex target biosensing. ACS Appl Mater Interfaces 10:42009–42017. https://doi.org/10.1021/acsami.8b15677

    Article  CAS  PubMed  Google Scholar 

  18. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  Google Scholar 

  19. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J, Reich M, Chan JA, Glickman JN, Ikeda K, Hashimoto M, Watanabe G, Daidone MG, Roayaie S, Schwartz M, Thung S, Salvesen HB, Gabriel S, Mazzaferro V, Bruix J, Friedman SL, Kumada H, Llovet JM, Golub TR (2008) Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 359(19):1995–2004. https://doi.org/10.1056/NEJMoa0804525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006. https://doi.org/10.1038/cr.2008.282

    Article  CAS  PubMed  Google Scholar 

  21. Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, Paterson JC, Cattan H, Enver T, Mager R, Boultwood J, Wainscoat JS, Hatton CS (2007) MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 121(5):1156–1161. https://doi.org/10.1002/ijc.22800

    Article  CAS  PubMed  Google Scholar 

  22. Gustafson D, Tyryshkin K, Renwick N (2016) microRNA-guided diagnostics in clinical samples. Best Pract Res Clin Endocrinol Metab 30(5):563–575. https://doi.org/10.1016/j.beem.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Ma J, Jiang Z, Wu F, Ping J, Ming L (2017) Identification of microRNAs as diagnostic biomarkers for acute myocardial infarction in Asian populations: a systematic review and meta-analysis. Medicine 96(24):e7173–e7173. https://doi.org/10.1097/MD.0000000000007173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goretti E, Devaux Y (2016) Which future for circulating microRNAs as biomarkers of acute myocardial infarction? Ann Transl Med 4(21):440–440. https://doi.org/10.21037/atm.2016.11.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu G, Niu X, Meng X, Zhang Z (2018) Sensitive miRNA markers for the detection and management of NSTEMI acute myocardial infarction patients. J Thorac Dis 10(6):3206–3215. https://doi.org/10.21037/jtd.2018.05.141

    Article  PubMed  PubMed Central  Google Scholar 

  26. Varallyay E, Burgyan J, Havelda Z (2007) Detection of microRNAs by northern blot analyses using LNA probes. Methods (San Diego Calif) 43(2):140–145. https://doi.org/10.1016/j.ymeth.2007.04.004

    Article  CAS  Google Scholar 

  27. Clancy E, Burke M, Arabkari V, Barry T, Kelly H, Dwyer RM, Kerin MJ, Smith TJ (2017) Amplification-free detection of microRNAs via a rapid microarray-based sandwich assay. Anal Bioanal Chem 409(14):3497–3505. https://doi.org/10.1007/s00216-017-0298-6

    Article  CAS  PubMed  Google Scholar 

  28. Kim KJ, Kwak J, Lee JH, Lee SS (2017) Real-time qRT-PCR assay for the detection of miRNAs using bi-directional extension sequences. Anal Biochem 536:32–35. https://doi.org/10.1016/j.ab.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  29. Shagin DA, Rebrikov DV, Kozhemyako VB, Altshuler IM, Shcheglov AS, Zhulidov PA, Bogdanova EA, Staroverov DB, Rasskazov VA, Lukyanov S (2002) A novel method for SNP detection using a new duplex-specific nuclease from crab hepatopancreas. Genome Res 12(12):1935–1942. https://doi.org/10.1101/gr.547002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhulidov PA, Bogdanova EA, Shcheglov AS, Vagner LL, Khaspekov GL, Kozhemyako VB, Matz MV, Meleshkevitch E, Moroz LL, Lukyanov SA, Shagin DA (2004) Simple cDNA normalization using Kamchatka crab duplex-specific nuclease. Nucleic Acids Res 32(3):e37–e37. https://doi.org/10.1093/nar/gnh031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Howes PD, Kim E, Spicer CD, Thomas MR, Lin Y, Crowder SW, Pence IJ, Stevens MM (2018) Duplex-specific nuclease-amplified detection of MicroRNA using compact quantum dot-DNA conjugates. ACS Appl Mater Interfaces 10(34):28290–28300. https://doi.org/10.1021/acsami.8b07250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xi Q, Zhou DM, Kan YY, Ge J, Wu ZK, Yu RQ, Jiang JH (2014) Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Anal Chem 86(3):1361–1365. https://doi.org/10.1021/ac403944c

    Article  CAS  PubMed  Google Scholar 

  33. Xiao M, Man T, Zhu C, Pei H, Shi J, Li L, Qu X, Shen X, Li J (2018) MoS2 Nanoprobe for MicroRNA quantification based on duplex-specific nuclease signal amplification. ACS Appl Mater Interfaces 10(9):7852–7858. https://doi.org/10.1021/acsami.7b18984

    Article  CAS  PubMed  Google Scholar 

Download references

Author contribution statement

Chengjian Yang and Zhijun Han design experiments; Yan Jin, Shuya Wang, Xiaoxiao Liu and Haohao Liu carry out experiments; Xue Zhu, Ke Wang and Peiling Zhou analyze experimental results; Xue Zhu and Ke Wang write the manuscript.

Funding

This work was supported by grant from Natural Science Foundation of Jiangsu Province (No. BK20171147), Jiangsu Young Medical Talents (QNRC2016167), Six talent peaks project in Jiangsu Province (WSW-047), The Science and Technology Projects of Wuxi City (WX18IVJN016) and The Major Science and Technology Projects of Wuxi City (Z201804, MS201653).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengjian Yang or Zhijun Han.

Ethics declarations

Declarations of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Wang, K., Jin, Y. et al. Multiplexed fluorometric determination for three microRNAs in acute myocardial infarction by using duplex-specific nuclease and MoS2 nanosheets. Microchim Acta 187, 15 (2020). https://doi.org/10.1007/s00604-019-3896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3896-5

Keywords

Navigation