Skip to main content
Log in

Development of a novel ssDNA aptamer targeting cardiac troponin I and its clinical applications

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cardiac troponin I (cTnI) is a specific biomarker of acute myocardial infarction (AMI). However, cTnI detection kits prepared with antibodies have many defects. Nucleic acid aptamers are sequences of single-strand DNA or RNA that can overcome the deficiency of antibodies. Herein, sandwich ELONA methods were established based on aptamers. Two selected ssDNA aptamers (Apt3 and Apt6) showed high binding affinity and sensibility (Apt3: Kd = 1.01 ± 0.07 nM, Apt6: k = 0.68 ± 0.05) and did not bind to the same domain of cTnI. Therefore, these two aptamers can be applied to the ELONA methods. The detection range of cTnI using the dual-aptamer sandwich ELONA method was 0.05–200 ng/mL, and the bioanalytical method verification results can meet the national standard of Chinese Pharmacopoeia (2020 Edition). There was no difference between results of the dual-aptamer sandwich ELONA method and the diagnostic results of serum obtained from 243 people (P = 0.39, P ˃ 0.05). The sensitivity and specificity of the ELONA with cTnI in serum were 96.46% and 93.85%, respectively. Compared with the FICA kit, which is clinically used, the consequences of ELONA method are closer to the diagnostic results. This study suggests that the aptamers Apt3 and Apt6 have high affinity and strong specificity and that the dual-aptamer sandwich ELONA method has a wide detection range and can be used to determine cTnI in serum, with potential applications in the diagnosis of AMIs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Solomon MD, McNulty EJ, Rana JS, Leong TK, Lee C, Sung SH, et al. The Covid-19 pandemic and the incidence of acute myocardial infarction. N Engl J Med. 2020;383(7):691–3.

    Article  Google Scholar 

  2. Gulati R, Behfar A, Narula J, Kanwar A, Lerman A, Cooper L, et al. Acute myocardial infarction in young individuals. Mayo Clin Proc. 2020;95(1):136–56.

    Article  Google Scholar 

  3. Alexandra MH, Terrence EM, Mary EG, Dodson JA, Tsang S, Haghighat L, et al. Association between mobility measured during hospitalization and functional outcomes in older adults with acute myocardial infarction in the SILVER-AMI study. JAMA Intern Med. 2019;179(12):1669–77.

    Article  Google Scholar 

  4. Musher DM, Abers MS, Corrales-Medina VF. Acute infection and myocardial infarction. N Engl J Med. 2019;380(2):171–6.

    Article  CAS  Google Scholar 

  5. Renato KL, Marcelo K, Paulo HNS, Caixeta A, Franken M, Pereira C, et al. Increased hospitalizations for decompensated heart failure and acute myocardial infarction during mild winters: a seven-year experience in the public health system of the largest city in Latin America. PLoS One. 2018;13(1):e0190733–43.

    Article  Google Scholar 

  6. Sun CY, Li CY, Sung JM, Cheng YY, Wu JL, Kuo YT, et al. A comparison of the risk of acute myocardial infarction in patients receiving hemodialysis and peritoneal dialysis: a population-based, propensity score-matched cohort study. Atherosclerosis. 2020;307:130–8.

    Article  CAS  Google Scholar 

  7. Kaier TE, Alaour B, Marber M. Cardiac myosin-binding protein C-from bench to improved diagnosis of acute myocardial infarction. Cardiovasc Drugs Ther. 2019;33(2):221–30.

    Article  CAS  Google Scholar 

  8. Cheng ZY, Wang R, Xing YL, Zhao LL, Choo J, Yu FB. SERS-based immunoassay using gold-patterned array chips for rapid and sensitive detection of dual cardiac biomarkers. Analyst. 2019;144(22):6533–40.

    Article  CAS  Google Scholar 

  9. Mihoc D, Lupu LM, Wiegand P, Kleinekofort W, Müller O, Völklein F, et al. Antibody epitope and affinity determination of the myocardial infarction marker myoglobin by SPR-biosensor mass spectrometry. J Am Soc Mass Spectrom. 2021;32(1):106–13.

    Article  CAS  Google Scholar 

  10. Alquézar-Arbé A, Sanchís J, Guillén E, Bardají A, Miró Ò, Ordóñez-Llanos J. Cardiac troponin measurement and interpretation in the diagnosis of acute myocardial infarction in the emergency department: a consensus statement. Emergencias. 2018;30(5):336–49.

    PubMed  Google Scholar 

  11. Schulte C, Barwari T, Joshi A, Theofilatos K, Zampetaki A, Barallobre-Barreiro J, et al. Comparative analysis of circulating noncoding RNAs versus protein biomarkers in the detection of myocardial injury. Circ Res. 2019;125(3):328–40.

    Article  CAS  Google Scholar 

  12. Lee CC, Huang SS, Yeo YH, Hou YT, Park JY, Inoue K, et al. High-sensitivity-cardiac troponin for accelerated diagnosis of acute myocardial infarction: a systematic review and meta-analysis. Am J Emerg Med. 2020;38(7):1402–7.

    Article  Google Scholar 

  13. Wang T, Chen CY, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv. 2019;37(1):28–50.

    Article  CAS  Google Scholar 

  14. Plach M, Schubert T. Biophysical characterization of aptamer-target interactions. Adv Biochem Eng Biotechnol. 2020;174:1–15.

    CAS  PubMed  Google Scholar 

  15. Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications. Molecules. 2019;24(5):941–63.

    Article  Google Scholar 

  16. Darmostuk M, Rimpelova S, Gbelcova H, Ruml Y. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. 2015;33(6 Pt 2):1141–61.

    Article  CAS  Google Scholar 

  17. Nimjee SM, White RR, Becker RC, Sullenger BA. Aptamers as therapeutics. Annu Rev Pharmacol Toxicol. 2017;57:61–79.

    Article  CAS  Google Scholar 

  18. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.

    Article  CAS  Google Scholar 

  19. Wan LY, Yuan WF, Ai WB, Ai YW, Wang JJ, Chu LY, et al. An exploration of aptamer internalization mechanisms and their applications in drug delivery. Expert Opin Drug Deliv. 2019;16(3):207–18.

    Article  CAS  Google Scholar 

  20. Li ZH, Mohamed MA, Vinu Mohan AM, Zhu ZG, Sharma V, Mishra GK, et al. Application of electrochemical aptasensors toward clinical diagnostics, food, and environmental monitoring: review. Sensors (Basel). 2019;19(24):5435–4557.

    Article  CAS  Google Scholar 

  21. Belleperche M, DeRosa MC. pH-control in aptamer-based diagnostics, therapeutics, and analytical applications. Pharmaceuticals (Basel). 2018;11(3):80–93.

    Article  CAS  Google Scholar 

  22. Bala J, Chinnapaiyan S, Dutta RK, Unwalla H. Aptamers in HIV research diagnosis and therapy. RNA Biol. 2018;15(3):327–37.

    Article  Google Scholar 

  23. Bates PJ, Reyes-Reyes EM, Malik MT, Murphy EM, O'Toole MG, Trent JO. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: uses and mechanisms. Biochim Biophys Acta Gen Subj. 2017;1861(5 Pt B):1414–28.

    Article  CAS  Google Scholar 

  24. Yang Q, Jia CZ, Li TY. Prediction of aptamer-protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier. Math Biosci. 2019;311:103–8.

    Article  CAS  Google Scholar 

  25. Lu Q, Liu XX, Hou JJ, Yuan QX, Li YN, Chen SR. Selection of aptamers specific for DEHP based on ssDNA library immobilized SELEX and development of electrochemical impedance spectroscopy Aptasensor. Molecules. 2020;25(3):747–60.

    Article  CAS  Google Scholar 

  26. Koshy L, Anju AL, Harikrishnan S, Kutty VR, Jissa VT, Kurikesu I, et al. Evaluating genomic DNA extraction methods from human whole blood using endpoint and real-time PCR assays. Mol Biol Rep. 2017;44(1):97–108.

    Article  CAS  Google Scholar 

  27. Kadian N, Raju KSR, Rashid M, Malik MY, Taneja I, Wahajuddin M. Comparative assessment of bioanalytical method validation guidelines for pharmaceutical industry. J Pharm Biomed Anal. 2016;126:83–97.

    Article  CAS  Google Scholar 

  28. Tjora HL, Steiro OT, Langørgen J, Bjørneklett R, Nygård OK, Skadberg Ø, et al. Cardiac troponin assays with improved analytical quality: a trade-off between enhanced diagnostic performance and reduced long-term prognostic value. J Am Heart Assoc. 2020;9(23):e017465–88.

    Article  CAS  Google Scholar 

  29. Boeddinghaus J, Nestelberger T, Twerenbold R, Koechlin L, Meier M, Troester V, et al. High-sensitivity cardiac troponin I assay for early diagnosis of acute myocardial infarction. Clin Chem. 2019;65(7):893–904.

    Article  CAS  Google Scholar 

  30. Nykänen AI, Holmström EJ, Tuuminen R, Krebs R, Dhaygude K, Kankainen M, et al. Donor simvastatin treatment in heart transplantation. Circulation. 2019;140(8):627–40.

    Article  Google Scholar 

  31. Anderson JL, Morrow DA. Acute myocardial infarction. N Engl J Med. 2017;376(21):2053–64.

    Article  CAS  Google Scholar 

  32. Vafaie M, Stoyanov KM, Giannitsis E. Diagnosis of myocardial infarction in critically ill, ventilated patients. Med Klin Intensivmed Notfmed. 2019;114(4):290–6.

    Article  CAS  Google Scholar 

  33. Cy AS, Daniela C. FDA-approved oligonucleotide therapies in 2017. Mol Ther. 2017;25(5):1069–75.

    Article  Google Scholar 

  34. Duan Y, Gao ZQ, Wang LH, Wang HS, Zhang HX, Li H. Selection and identification of chloramphenicol-specific DNA aptamers by Mag-SELEX. Appl Biochem Biotechnol. 2016;180(8):1644–56.

    Article  CAS  Google Scholar 

  35. Sattari R, Palizban A, Khanahmad H. Single-strand DNA-like oligonucleotide aptamer against proprotein convertase subtilisin/kexin 9 using CE-SELEX: PCSK9 targeting selection. Cardiovasc Drugs Ther. 2020;34(4):475–85.

    Article  CAS  Google Scholar 

  36. Lin N, Wu L, Xu X, Wu QY, Wang YZ, Shen HC, et al. Aptamer generated by Cell-SELEX for specific targeting of human glioma cells. ACS Appl Mater Interfaces. 2020;13(8):9306–15.

    Article  Google Scholar 

  37. Özyurt C, Canbay ZÇ, Dinçkaya E, Evran S. A highly sensitive DNA aptamer-based fluorescence assay for sarcosine detection down to picomolar levels. Int J Biol Macromol. 2019;129:91–7.

    Article  Google Scholar 

  38. Dorraj GS, Rassaee MJ, Latifi AM, Pishgoo B, Tavallaei M. Selection of DNA aptamers against human cardiac troponin I for colorimetric sensor based dot blot application. J Biotechnol. 2015;208:80–6.

    Article  CAS  Google Scholar 

  39. Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, et al. Aptamers chemistry: chemical modifications and conjugation strategies. Molecules. 2019;25(1):3–53.

    Article  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This work was supported by the Guangzhou Science and Technology Plan Project (No. 2019030100143) and the Guangzhou Science and Technology Major Project (No. 201604020166), National Natural Science Foundation of China (No.81971742).

Author information

Authors and Affiliations

Authors

Contributions

Y. C. conceived the study and drafted the manuscript. All authors revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pengke Yan.

Ethics declarations

Ethics approval

We confirmed that all protocols on human samples were approved by the Medical Ethics Committee of the Third Affiliated Hospital of Guangzhou Medical University.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, Y., Wang, Z., Ke, P. et al. Development of a novel ssDNA aptamer targeting cardiac troponin I and its clinical applications. Anal Bioanal Chem 413, 7043–7053 (2021). https://doi.org/10.1007/s00216-021-03667-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03667-z

Keywords

Navigation