Skip to main content

Advertisement

Log in

Electrochemical selection of a DNA aptamer, and an impedimetric method for determination of the dedicator of cytokinesis 8 by self-assembly of a thiolated aptamer on a gold electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The autosomal recessive-hyper immunoglobulin E syndromes (AR-HIES) are inherited inborn primary immunodeficiency disorders caused mainly by mutations in the dedicator of cytokinesis 8 (DOCK8) gene. A method is described for the selection of DNA aptamers against DOCK8 protein. The selection was performed by using a gold electrode as the solid matrix for immobilization of DOCK8. This enables voltammetric monitoring of the bound DNA after each selection cycle. After eight rounds of selection, high affinity DNA aptamers for DOCK8 were identified with dissociation constants (Kds) ranging from 3.3 to 66 nM. The aptamer which a Kd of 8.8 nM was used in an aptasensor. A gold electrode was modified by self-assembly of the thiolated aptamer, and the response to the DOCK8 protein was detected by monitoring the change in the electron transfer resistance using the ferro/ferricyanide system as a redox probe. The aptasensor works in the 100 pg.mL−1 to 100 ng.mL−1 DOCK8 concentration range, has a detection limit of 81 pg.mL−1 and good selectivity over other proteins in the serum.

Schematic representation of an electrochemical screening protocol for the selection of DNA aptamer against dedicator of cytokinesis 8 protein using electrode as solid support for target immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Freeman AF, Holland SM (2008) The hyper-IgE syndromes. Immunol Allergy Clin N Am 28(2):277–291. https://doi.org/10.1016/j.iac.2008.01.005

    Article  Google Scholar 

  2. Hashemi H, Mohebbi M, Mehravaran S, Mazloumi M, Jahanbani-Ardakani H, Abtahi S-H (2017) Hyperimmunoglobulin E syndrome: genetics, immunopathogenesis, clinical findings, and treatment modalities. J Res Med Sci: 22:53–53. https://doi.org/10.4103/jrms.JRMS_1050_16

    Article  Google Scholar 

  3. Ozcan E, Notarangelo LD, Geha RS (2008) Primary immune deficiencies with aberrant IgE production. J Allergy Clin Immunol 122(6):1054–1062. https://doi.org/10.1016/j.jaci.2008.10.023

    Article  CAS  PubMed  Google Scholar 

  4. Yong PFK, Freeman AF, Engelhardt KR, Holland S, Puck JM, Grimbacher B (2012) An update on the hyper-IgE syndromes. Arthritis Res Ther 14(6):228–228. https://doi.org/10.1186/ar4069

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aydin S, Kilic S, Aytekin C, Kumar A, Porras O, Kainulainen L, Kostyuchenko L, Genel F, Kutukculer N, Karaca N, Gonzalez-Granado L, Abbott J, Al-Zahrani D, Rezaei N, Baz Z, Thiel J, Ehl S, Marodi L, S Orange J, H Albert M (2015) DOCK8 deficiency: clinical and immunological phenotype and treatment options - a review of 136 patients. J Clin Immunol 35(2):189–198. https://doi.org/10.1007/s10875-014-0126-0

    Article  CAS  PubMed  Google Scholar 

  6. Biggs CM, Keles S, Chatila TA (2017) DOCK8 deficiency: insights into pathophysiology, clinical features and management. Clin Immunol 181:75–82. https://doi.org/10.1016/j.clim.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Engelhardt KR, McGhee S, Winkler S, Sassi A, Woellner C, Lopez-Herrera G, Chen A, Kim HS, Lloret MG, Schulze I, Ehl S, Thiel J, Pfeifer D, Veelken H, Niehues T, Siepermann K, Weinspach S, Reisli I, Keles S, Genel F, Kutuculer N, Camcıoğlu Y, Somer A, Karakoc-Aydiner E, Barlan I, Gennery A, Metin A, Degerliyurt A, Pietrogrande MC, Yeganeh M, Baz Z, Al-Tamemi S, Klein C, Puck JM, Holland SM, McCabe ERB, Grimbacher B, Chatila TA (2009) Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol 124(6):1289–1302.e1284. https://doi.org/10.1016/j.jaci.2009.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jabara HH, McDonald DR, Janssen E, Massaad MJ, Ramesh N, Borzutzky A, Rauter I, Benson H, Schneider L, Baxi S, Recher M, Notarangelo LD, Wakim R, Dbaibo G, Dasouki M, Al-Herz W, Barlan I, Baris S, Kutukculer N, Ochs HD, Plebani A, Kanariou M, Lefranc G, Reisli I, Fitzgerald KA, Golenbock D, Manis J, Keles S, Ceja R, Chatila TA, Geha RS (2012) DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol 13(6):612–620. https://doi.org/10.1038/ni.2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freeman AF, Olivier KN (2016) Hyper-IgE syndromes and the lung. Clin Chest Med 37(3):557–567. https://doi.org/10.1016/j.ccm.2016.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schimke LF, Sawalle-Belohradsky J, Roesler J, Wollenberg A, Rack A, Borte M, Rieber N, Cremer R, Maaß E, Dopfer R, Reichenbach J, Wahn V, Hoenig M, Jansson AF, Roesen-Wolff A, Schaub B, Seger R, Hill HR, Ochs HD, Torgerson TR, Belohradsky BH, Renner ED (2010) Diagnostic approach to the hyper-IgE syndromes: immunologic and clinical key findings to differentiate hyper-IgE syndromes from atopic dermatitis. J Allergy Clin Immunol 126(3):611–617.e611. https://doi.org/10.1016/j.jaci.2010.06.029

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, Matthews HF, Davis J, Turner ML, Uzel G, Holland SM, Su HC (2009) Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med 361(21):2046–2055. https://doi.org/10.1056/NEJMoa0905506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahdieh N, Rabbani B (2013) An overview of mutation detection methods in genetic disorders. Iran J Pediatr 23(4):375–388

    PubMed  PubMed Central  Google Scholar 

  13. Bejjani BA, Shaffer LG (2006) Application of array-based comparative genomic hybridization to clinical diagnostics. J Mol Diagn: JMD 8(5):528–533. https://doi.org/10.2353/jmoldx.2006.060029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pai S-Y, de Boer H, Massaad MJ, Chatila TA, Keles S, Jabara HH, Janssen E, Lehmann LE, Hanna-Wakim R, Dbaibo G, McDonald DR (2014) Al-Herz W, Geha RS flow cytometry diagnosis of dedicator of cytokinesis 8 (DOCK8) deficiency. J Allergy Clin Immunol 134(1):221–223.e227. https://doi.org/10.1016/j.jaci.2014.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eissa S, Abdulkarim H, Hawalta I, Jacob M, Dasouki M, Rahman AA, Zourob M (2018) Development of Impedimetric Immunosensors for the diagnosis of DOCK8 and STAT3 related hyper-immunoglobulin E syndrome. Electroanalysis 30(9):2021–2027. https://doi.org/10.1002/elan.201800228

    Article  CAS  Google Scholar 

  16. Eissa S, Abdulkarim H, Dasouki M, Al Mousa H, Arnout R, Al Saud B, Rahman AA, Zourob M (2018) Multiplexed detection of DOCK8, PGM3 and STAT3 proteins for the diagnosis of hyper-immunoglobulin E syndrome using gold nanoparticles-based immunosensor array platform. Biosens Bioelectron 117:613–619. https://doi.org/10.1016/j.bios.2018.06.058

    Article  CAS  PubMed  Google Scholar 

  17. Dunn MR, Jimenez RM, Chaput JC (2017) Analysis of aptamer discovery and technology. Nat Rev Chem 1:0076

  18. Ilgu M, Nilsen-Hamilton M (2016) Aptamers in analytics. Analyst 141(5):1551–1568. https://doi.org/10.1039/c5an01824b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC Trends in Anal Chem 27(2):108–117. https://doi.org/10.1016/j.trac.2007.12.004

    Article  CAS  Google Scholar 

  20. Mendonsa SD, Bowser MT (2004) In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 126(1):20–21. https://doi.org/10.1021/ja037832s

    Article  CAS  PubMed  Google Scholar 

  21. Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A, Krylov SN (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Amer Chem Soc 127(9):3165–3171. https://doi.org/10.1021/ja042394q

    Article  CAS  Google Scholar 

  22. Jing M, Bowser MT (2013) Tracking the emergence of high affinity aptamers for rhVEGF(165) during CE-SELEX using high throughput sequencing. Anal Chem 85(22):10761–10770. https://doi.org/10.1021/ac401875h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gopinath SCB (2007) Methods developed for SELEX. Anal Bioanal Chem 387(1):171–182. https://doi.org/10.1007/s00216-006-0826-2

    Article  CAS  PubMed  Google Scholar 

  24. Nabavinia MS, Charbgoo F, Alibolandi M, Mosaffa F, Gholoobi A, Ramezani M, Abnous K (2018) Comparison of flow cytometry and ELASA for screening of proper candidate aptamer in cell-SELEX Pool. Appl Biochem Biotechnol 184(2):444–452. https://doi.org/10.1007/s12010-017-2548-7

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Gong Q, Maheshwari N, Eisenstein M, Arcila ML, Kosik KS, Soh HT (2014) Particle display: a quantitative screening method for generating high-affinity aptamers. Angew Chem Int Ed 53(19):4796–4801. https://doi.org/10.1002/anie.201309334

    Article  CAS  Google Scholar 

  26. Raddatz M-SL, Dolf A, Endl E, Knolle P, Famulok M, Mayer G (2008) Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angew Chem Int Ed 47(28):5190–5193. https://doi.org/10.1002/anie.200800216

    Article  CAS  Google Scholar 

  27. Wang Q, Liu W, Xing Y, Yang X, Wang K, Jiang R, Wang P, Zhao Q (2014) Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic Chip and its biosensing application. Anal Chem 86(13):6572–6579. https://doi.org/10.1021/ac501088q

    Article  CAS  PubMed  Google Scholar 

  28. Jing M, Bowser MT (2011) Isolation of DNA aptamers using micro free flow electrophoresis. Lab Chip 11(21):3703–3709. https://doi.org/10.1039/c1lc20461k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hybarger G, Bynum J, Williams RF, Valdes JJ, Chambers JP (2006) A microfluidic SELEX prototype. Anal Bioanal Chem 384(1):191–198. https://doi.org/10.1007/s00216-005-0089-3

    Article  CAS  PubMed  Google Scholar 

  30. Hung L-Y, Wang C-H, Fu C-Y, Gopinathan P, Lee G-B (2016) Microfluidics in the selection of affinity reagents for the detection of cancer: paving a way towards future diagnostics. Lab Chip 16(15):2759–2774. https://doi.org/10.1039/c6lc00662k

    Article  CAS  PubMed  Google Scholar 

  31. Weng C-H, Huang C-J, Lee G-B (2012) Screening of aptamers on microfluidic Systems for Clinical Applications. Sensors (Basel, Switzerland) 12(7):9514–9529. https://doi.org/10.3390/s120709514

    Article  CAS  Google Scholar 

  32. Eissa S, Ng A, Siaj M, Tavares AC, Zourob M (2013) Selection and identification of DNA aptamers against Okadaic acid for biosensing application. Anal Chem 85(24):11794–11801. https://doi.org/10.1021/ac402220k

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shimaa Eissa or Mohammed Zourob.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eissa, S., Siddiqua, A., Chinnappan, R. et al. Electrochemical selection of a DNA aptamer, and an impedimetric method for determination of the dedicator of cytokinesis 8 by self-assembly of a thiolated aptamer on a gold electrode. Microchim Acta 186, 828 (2019). https://doi.org/10.1007/s00604-019-3817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3817-7

Keywords

Navigation