Skip to main content
Log in

Colorimetric aminotriazole assay based on catalase deactivation-dependent longitudinal etching of gold nanorods

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric and visual assay is described for the herbicide aminotriazole (ATZ). It is based on the etching of gold nanorods (AuNRs) by iodine which is formed on oxidation of iodide via H2O2. Longitudinal etching of the AuNRs occurs quickly and is accompanied by a color change from dark blue to red. In the absence of ATZ and the presence of active catalase (CAT), H2O2 is quickly decomposed into water, and the AuNRs will not be etched. In the presence of ATZ, CAT is partially deactivated, and this affects the amount of available H2O2 and, consequently, of the iodine. Hence, the color is significantly changed. The color changes can be easily detected with bare eyes. The assay has a linear response in the 5 to 70 μM concentration range, with a detection limit of 1.3 μM and high selectivity for ATZ. It was applied to the determination of ATZ in water and food samples.

A multicolor colorimetric method is developed for aminotriazole (ATZ) detection based on catalase (CAT) deactivation-dependent longitudinal etching of gold nanorods (AuNRs). The color signals can be visually identified. Good detection performances and capability for evaluating ATZ level in water and food samples is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Catastini C, Rafqah S, Mailhot G, Sarakha M (2004) Degradation of amitrole by excitation of iron(III) aquacomplexes in aqueous solutions. J Photoch Photobio A 162:97–103

    Article  CAS  Google Scholar 

  2. Da Pozzo A, Merli C, Sirés I, Garrido JA, Rodríguez RM, Brillas E (2005) Removal of the herbicide amitrole from water by anodic oxidation and electro-Fenton. Environ Chem Lett 3:7–11

    Article  Google Scholar 

  3. Moreno M, Bermejo E, Sanchez A, Chicharro M, Zapardiel A (2008) Application of matrix solid-phase dispersion to the determination of amitrole and urazole residues in apples by capillary electrophoresis with electrochemical detection. Anal Bioanal Chem 391:867–872

    Article  CAS  Google Scholar 

  4. Clark JM (1997) Insecticides as tools in probing vital receptors and enzymes in excitable membranes. Pestic Biochem Physiol 57:235–254

    Article  CAS  Google Scholar 

  5. Bobeldijk I, Broess K, Speksnijder P, Leerdam TV (2001) Determination of the herbicide amitrole in water with pre-column derivatization, liquid chromatography and tandem mass spectrometry. J Chromatogr A 938:15–22

    Article  CAS  Google Scholar 

  6. Maringa A, Mugadza T, Antunes E, Nyokong T (2013) Characterization and electrocatalytic behaviour of glassy carbon electrode modified with nickel nanoparticles towards amitrole detection. J Electroanal Chem 700:86–92

    Article  CAS  Google Scholar 

  7. Sanchez-Bayo F, Hyne RV, Desseille KL (2010) An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Anal Chim Acta 675:125–131

    Article  CAS  Google Scholar 

  8. Sun Y, Liu PF, Wang D, Li JQ, Cao YS (2009) Determination of amitrole in environmental water samples with precolumn derivatization by high-performance liquid chromatography. J Agric Food Chem 57:4540–4544

    Article  CAS  Google Scholar 

  9. Pepich B, Brahmprakash DM, Dattilio T (2005) Development of U.S. EPA method 527 for the analysis of selected pesticides and flame retardants in the UCMR survey. Environ Sci Technol 39:4996–5004

    Article  CAS  Google Scholar 

  10. Girod M, Delaurent C, Charles L (2006) Analysis of amitrole by normal-phase liquid chromatography and tandem mass spectrometry using a sheath liquid electrospray interface. Rapid Commun Mass Sp 20:892–896

    Article  CAS  Google Scholar 

  11. Chicharro M, Moreno M, Bermejo E, Ongay S, Zapardiel A (2005) Determination of amitrole and urazole in water samples by capillary zone electrophoresis using simultaneous UV and amperometrical detection. J Chromatogr A 1099:191–197

    Article  CAS  Google Scholar 

  12. Takeda S, Fukushi K, Chayama K, Nakayama Y, Tanaka Y, S-i W (2004) Simultaneous separation and on-line concentration of amitrole and benzimidazole pesticides by capillary electrophoresis with a volatile migration buffer applicable to mass spectrometric detection. J Chromatogr A 1051:297–301

    Article  CAS  Google Scholar 

  13. Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Adv Mater 23:4215–4236

    Article  CAS  Google Scholar 

  14. Tang L, Li J (2017) Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sens 2:857–875

    Article  CAS  Google Scholar 

  15. Jiao YF, Liu QY, Qiang H, Chen ZB (2018) Colorimetric detection of L-histidine based on the target-triggered self-cleavage of swing-structured DNA duplex-induced aggregation of gold nanoparticles. Microchim Acta 185:452–458

    Article  Google Scholar 

  16. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252

    Article  CAS  Google Scholar 

  17. Hu XL, Jin HY, He XP, James TD, Chen GR, Long YT (2015) Colorimetric and plasmonic detection of lectins using core-shell gold glyconanoparticles prepared by copper-free click chemistry. ACS Appl Mater Interfaces 7:1874–1878

    Article  CAS  Google Scholar 

  18. Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4:1871–1880

    Article  CAS  Google Scholar 

  19. Chen H, Shao L, Li Q, Wang J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42:2679–2724

    Article  CAS  Google Scholar 

  20. Howes PD, Rana S, Stevens MM (2014) Plasmonic nanomaterials for biodiagnostics. Chem Soc Rev 43:3835–3853

    Article  CAS  Google Scholar 

  21. Li J, Deng T, Chu X, Yang RH, Jiang J, Shen G, Yu R (2010) Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal Chem 82:2811–2816

    Article  CAS  Google Scholar 

  22. Wang H, Wang Y, Jin J, Yang R (2008) Gold nanoparticle-based colorimetric and " turn-on " fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem 80:9021–9028

    Article  CAS  Google Scholar 

  23. Liu QL, Li L, Zhao Y, Chen ZB (2018) Colorimetric detection of DNA at the nanomolar level based on enzyme-induced gold nanoparticle de-aggregation. Microchim Acta 185:301–307

    Article  Google Scholar 

  24. Li F, Feng Y, Zhao C, Tang B (2011) Simple colorimetric sensing of trace bleomycin using unmodified gold nanoparticles. Biosens Bioelectron 26:4628–4631

    Article  CAS  Google Scholar 

  25. Zhou ML, Lin T, Gan XX (2017) Colorimetric aggregation assay for silver(I) based on the use of aptamer modified gold nanoparticles and C-ag(I)-C interaction. Microchim Acta 184:4671–4677

    Article  CAS  Google Scholar 

  26. Chen Z, Chen C, Huang H, Luo F, Guo L, Zhang L, Lin Z, Chen G (2018) Target-induced horseradish peroxidase deactivation for multicolor colorimetric assay of hydrogen sulfide in rat brain microdialysis. Anal Chem 90:6222–6228

    Article  CAS  Google Scholar 

  27. Wu S, Li DD, Gao ZZ, Wang JM (2017) Controlled etching of gold nanorods by the au(III)-CTAB complex, and its application to semi-quantitative visual determination of organophosphorus pesticides. Microchim Acta 184:4383–4391

    Article  CAS  Google Scholar 

  28. Zhao Q, Huang H, Zhang L, Wang L, Zeng Y, Xia X, Liu F, Chen Y (2016) Strategy to fabricate naked-eye readout ultrasensitive Plasmonic Nanosensor based on enzyme mimetic gold nanoclusters. Anal Chem 88:1412–1418

    Article  CAS  Google Scholar 

  29. Ma X, Lin Y, Guo L, Qiu B, Chen G, Yang HH, Lin Z (2017) A universal multicolor immunosensor for semiquantitative visual detection of biomarkers with the naked eyes. Biosens Bioelectron 87:122–128

    Article  CAS  Google Scholar 

  30. Nicholls P (1962) The reaction between Aminotriazole and catalase. Biochim Biophys Acta 59:414–420

    Article  CAS  Google Scholar 

  31. Davis A, Tran T, Young DR (1993) Solution chemistry of iodide leaching of gold. Hydrometallurgy 32:143–159

    Article  CAS  Google Scholar 

  32. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold Nanorods(NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  33. Zhang Z, Chen Z, Chen L (2015) Ultrasensitive visual sensing of Molybdate based on enzymatic-like etching of gold Nanorods. Langmuir 31:9253–9259

    Article  CAS  Google Scholar 

  34. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  35. Analytical Methods Committee (1987) Recommendations for the definition, estimation and use of the detection limit. Analyst 112:199–204

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the financial support through the National Natural Science Foundation of China (21605008, 21575018, 21735001, 21705010), and the Natural Science Foundation of Hunan Province (2019JJ30025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihe Qing or Ronghua Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Luo, G., Qing, Z. et al. Colorimetric aminotriazole assay based on catalase deactivation-dependent longitudinal etching of gold nanorods. Microchim Acta 186, 565 (2019). https://doi.org/10.1007/s00604-019-3677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3677-1

Keywords

Navigation