Skip to main content
Log in

An electrochemical daunorubicin sensor based on the use of platinum nanoparticles loaded onto a nanocomposite prepared from nitrogen decorated reduced graphene oxide and single-walled carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode (GCE) was modified with a nanocomposite prepared from nitrogen-doped reduced graphene oxide (N-rGO) and single walled carbon nanotubes (SWCNTs), and then loaded with platinum nanoparticles (Pt NPs) to obtain a voltammetric sensor for daunorubicin (DNR). Reductive doping of GO and the crystallization of the Pt NPs were carried out in a one-step hydrothermal process. The modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry. It exhibited high sensitivity compared with unmodified electrode. Some experimental parameters which affected sensor response were optimized. Under optimum conditions and at a working voltage of typically −0.56 V (vs. Ag/AgCl), the sensor has a low detection limit (3 ng mL−1), a wide linear range (0.01–6 μg mL−1) and good long-term stability. The method was successfully applied to the sensitive and rapid determination of DNR in spiked human serum samples.

Platinum nanoparticles were loaded onto a nanocomposite prepared from nitrogen decorated reduced graphene oxide and single-walled carbon nanotubes (N-rGO-SWCNTs-Pt) and then used for electrochemical determination of daunorubicin (DNR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bagheri H, Hajian A, Rezaei M, Shirzadmehr A (2017) Composite of cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J Hazard Mater 324:762–772

    Article  CAS  Google Scholar 

  2. Bučková M, Gründler P, Flechsig GU (2005) Adsorptive stripping voltammetric detection of daunomycin at a bismuth bulk electrode. Electroanal 17:440–444

    Article  Google Scholar 

  3. Cao L, Yan P, Sun K, Kirk DW (2009) Gold 3D brush nanoelectrode ensembles with enlarged active area for the direct voltammetry of daunorubicin. Electroanal 21:1183–1188

    Article  CAS  Google Scholar 

  4. Cao H, Zhou X, Qin Z, Liu Z (2013) Low-temperature preparation of nitrogen-doped graphene for supercapacitors. Carbon 56:218–223

    Article  CAS  Google Scholar 

  5. Chandra P, Noh HB, Won MS, Shim YB (2011) Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on au nanoparticles deposited conducting polymer. Biosens Bioelectron 26:4442–4449

    Article  CAS  Google Scholar 

  6. Chen Q, Zhang L, Chen G (2011) Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates. Anal Chem 84:171–178

    Article  Google Scholar 

  7. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615–17624

    Article  CAS  Google Scholar 

  8. Gao D, Hu J, Yang M, Li Q (2006) Determination of daunomycin at a novel COOH/indium tin oxide ion implantation-modified electrode. Anal Biochem 358:70–75

    Article  CAS  Google Scholar 

  9. Guo Y, Chen Y, Zhao Q, Shuang S, Dong C (2011) Electrochemical sensor for ultrasensitive determination of doxorubicin and methotrexate based on cyclodextrin-graphene hybrid nanosheets. Electroanal 23:2400–2407

    Article  CAS  Google Scholar 

  10. Hahn Y, Lee HY (2004) Electrochemical behavior and square wave voltammetric determination of doxorubicin hydrochloride. Arch Pharm Res 27:31–34

    Article  CAS  Google Scholar 

  11. Jiang 1H, Wang XM (2009) Highly sensitive detection of daunorubicin based on carbon nanotubes-drug supramolecular interaction. Electrochem Commun 11:126–129

    Article  Google Scholar 

  12. Kitamura H, Sekido M, Takeuchi H, Ohno M (2011) The method for surface functionalization of single-walled carbon nanotubes with fuming nitric acid. Carbon 49:3851–3856

    Article  CAS  Google Scholar 

  13. Kong FY, Li WW, Wang JY, Wang W (2015) UV-assisted photocatalytic synthesis of highly dispersed ag nanoparticles supported on DNA decorated graphene for quantitative iodide analysis. Biosens Bioelectron 69:206–212

    Article  CAS  Google Scholar 

  14. Krumpochova P, Kocurova A, Dolezel P, Mlejnek P (2011) Assay for determination of daunorubicin in cancer cells with multidrug resistance phenotype. J Chromatogr B 879:1875–1880

    Article  CAS  Google Scholar 

  15. Li Q, Wu X, Zhao J, Wu C, Wang X (2011) Real-time detection of the interaction between anticancer drug daunorubicin and cancer cells by au-MCNT nanocomposites modified electrodes. Sci China Chem 54:812–815

    Article  CAS  Google Scholar 

  16. Li P, Liu S, Yan S, Fan X, He Y (2011) A sensitive sensor for anthraquinone anticancer drugs and hsDNA based on CdTe/CdS quantum dots fluorescence reversible control. Colloid Surf A 392:7–15

    Article  CAS  Google Scholar 

  17. Liu Y, Liu Y, Feng H, Wu Y, Joshi L, Zeng X, Li J (2012) Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens Bioelectron 35:63–68

    Article  CAS  Google Scholar 

  18. Loren A, Eliasson C, Josefson M, Murty KVGK, Käll M, Abrahamsson J, Abrahamsson K (2001) Feasibility of quantitative determination of doxorubicin with surface-enhanced raman spectroscopy. J Raman Spectrosc 32:971–974

    Article  CAS  Google Scholar 

  19. Lü S (2003) Electrochemical behavior and detection of daunomycin at multi-walled carbon nanotubes modified electrode. Anal Lett 36:2597–2608

    Article  Google Scholar 

  20. Lu H, Yuan G, He Q, Chen H (2009) Rapid analysis of anthracycline antibiotics doxorubicin and daunorubicin by microchip capillary electrophoresis. Microchem J 92:170–173

    Article  CAS  Google Scholar 

  21. Lu D, ZhangY LS, Wang L, Wang C (2013) Synthesis of PtAu bimetallic nanoparticles on graphene-carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor. Talanta 112:111–116

    Article  CAS  Google Scholar 

  22. Tian Y, Wang F, Liu Y, Pang F, Zhang X (2014) Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim Acta 146:646–653

    Article  CAS  Google Scholar 

  23. Tian Y, Wang F, Liu Y, Pang F, Zhang X (2014) Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim Acta 146:646–653

    Article  CAS  Google Scholar 

  24. Wang Y, Wu Y, Huang Y, Zhang F, Yang X, Ma Y, Chen Y (2011) Preventing graphene sheets from restacking for high-capacitance performance. J Phys Chem C 115:23192–23197

    Article  CAS  Google Scholar 

  25. Xia AL, Wu HL, Fang DM, Ding YJ, Hu LQ, Yu RQ (2006) Determination of daunomycin in human plasma and urine by using an interference-free analysis of excitation-emission matrix fluorescence data with second-order calibration. Anal Sci 22:1189–1195

    Article  CAS  Google Scholar 

  26. Yan W, Shen XC, Zhang ZL, Chen C, Pang DW (2005) Electrochemical behavior of daunorubicin at DNA-MWCNT bioconjugates modified glassy carbon electrodes. Anal Lett 38:2579–2595

    Article  CAS  Google Scholar 

  27. Yang X, Gao H, Qian F, Zhao C, Liao X (2016) Internal standard method for the measurement of doxorubicin and daunorubicin by capillary electrophoresis with in-column double optical-fiber LED-induced fluorescence detection. J Pharmaceut Biomed 117:118–124

    Article  CAS  Google Scholar 

  28. You B, Wang L, Yao L, Yang J (2013) Three dimensional N-doped graphene-CNT networks for supercapacitor. Chem Commun 49:5016–5018

    Article  CAS  Google Scholar 

  29. You H, Zhang F, Liu Z, Fang J (2014) Free-standing Pt-au hollow nanourchins with enhanced activity and stability for catalytic methanol oxidation. ACS Catal 4:2829–2835

    Article  CAS  Google Scholar 

  30. Zalewski P, Zajac M, Jelinska A, Cielecka J, Oszczapowicz I (2011) Stability study of anticancer agent N-[(hexahydroazepin-1-yl) methyl] daunorubicin in aqueous solutions using HPLC method. Asian J Chem 23:835–838

    CAS  Google Scholar 

  31. Zhang H, Kuila T, Kim NH, Yu DS, Lee JH (2014) Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon 69:66–78

    Article  Google Scholar 

  32. Zhang H, Zhang L, Han Y, Yu Y, Xu M, Zhang X, Dong S (2017) RGO/au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells. Biosens Bioelectron 97:34–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21575123, 21675139, 21603184, 21705140, 21876144), the Natural Science Foundation of Jiangsu Province (BK20170474), the opening project of Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland (K2016-17, K2016-20), and Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 7179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, FY., Li, RF., Yao, L. et al. An electrochemical daunorubicin sensor based on the use of platinum nanoparticles loaded onto a nanocomposite prepared from nitrogen decorated reduced graphene oxide and single-walled carbon nanotubes. Microchim Acta 186, 321 (2019). https://doi.org/10.1007/s00604-019-3456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3456-z

Keywords

Navigation