Skip to main content
Log in

Colorimetric tyrosinase assay based on catechol inhibition of the oxidase-mimicking activity of chitosan-stabilized platinum nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

It is found that catechol inhibits the oxidase-mimicking activity of chitosan-protected platinum nanoparticles (Chit-PtNPs) by competing with the substrate for the active site of the Ch-PtNPs. The inhibition mechanism of catechol is different from that of ascorbic acid in that it neither reacts with O2•- nor reduces the oxidized 3,3′,5,5′-tetramethylbenzidine (TMB). Tyrosinase (TYRase) catalyzes the oxidation of catechol, thus restoring the activity of oxidase-mimicking Chit-PtNPs. By combining the Chit-PtNP, catechol, and TYRase interactions with the oxidation of TMB to form a yellow diamine (maximal absorbance at 450 nm), a colorimetric analytical method was developed for TYRase determination and inhibitor screening. The assay works in the 0.5 to 2.5 U·mL−1 TYRase activity range, and the limit of detection is 0.5 U·mL−1. In our perception, this new assay represents a powerful approach for determination of TYRase activity in biological samples.

Schematic representation of a colorimetric method for tyrosinase (TYRase) detection and inhibitor screening. It is based on the fact that catechol can inhibit the oxidase-like activity of chitosan-stabilized platinum nanoparticles (Ch-PtNPs) by competing with the substrate for the active sites and TYRase can catalyze the oxidation of catechol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ragg R, Natalio F, Tahir MN, Janssen H, Kashyap A, Strand D, Strand S, Tremel W (2014) Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano 8(5):5182–5189

    Article  CAS  Google Scholar 

  2. Lang NJ, Liu BW, Liu JW (2014) Characterization of glucose oxidation by gold nanoparticles using nanoceria. J Colloid Interface Sci 428:78–83

    Article  CAS  Google Scholar 

  3. He XL, Tan LF, Chen D, Wu XL, Ren XL, Zhang YQ, Meng XW, Tang FQ (2013) Fe3O4-au@mesoporous SiO2 microspheres: an ideal artificial enzymatic cascade system. Chem Commun 49(41):4643–4645

    Article  CAS  Google Scholar 

  4. Natalio F, Andre R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7(8):530–535

    Article  CAS  Google Scholar 

  5. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  6. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254

    Article  CAS  Google Scholar 

  7. Deng HH, Hong GL, Lin FL, Liu AL, Xia XH, Chen W (2016) Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal Chim Acta 915:74–80

    Article  CAS  Google Scholar 

  8. Hong L, Liu AL, Li GW, Chen W, Lin XH (2013) Chemiluminescent cholesterol sensor based on peroxidase-like activity of cupric oxide nanoparticles. Biosens Bioelectron 43:1–5

    Article  CAS  Google Scholar 

  9. Peng HP, Lin DW, Liu P, Wu YH, Li SH, Lei Y, Chen W, Chen YZ, Lin XH, Xia XH, Liu AL (2017) Highly sensitive and rapid colorimetric sensing platform based on water-soluble WOx quantum dots with intrinsic peroxidase-like activity. Anal Chim Acta 992:128–134

    Article  CAS  Google Scholar 

  10. Li YZ, Li TT, Chen W, Song YY (2017) Co4N nanowires: Noble-metal-free peroxidase mimetic with excellent salt- and temperature-resistant abilities. ACS Appl Mater Interfaces 9(35):29881–29888

    Article  CAS  Google Scholar 

  11. Zhuang QQ, Lin ZH, Jiang YC, Deng HH, He SB, Su LT, Shi XQ, Chen W (2017) Peroxidase-like activity of nanocrystalline cobalt selenide and its application for uric acid detection. Int J Nanomedicine 12:3295–3302

    Article  CAS  Google Scholar 

  12. Cai SF, Qi C, Li YD, Han QS, Yang R, Wang C (2016) PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J Mater Chem B 4(10):1869–1877

    Article  CAS  Google Scholar 

  13. Xu C, Qu XG (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6:e90

    Article  CAS  Google Scholar 

  14. Wang GL, Jin LY, Wu XM, Dong YM, Li ZJ (2015) Label-free colorimetric sensor for mercury(II) and DNA on the basis of mercury(II) switched-on the oxidase-mimicking activity of silver nanoclusters. Anal Chim Acta 871:1–8

    Article  CAS  Google Scholar 

  15. Asati A, Kaittanis C, Santra S, Perez JM (2011) pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal Chem 83(7):2547–2553

    Article  CAS  Google Scholar 

  16. Pal J, Pal T (2016) Enzyme mimicking inorganic hybrid Ni@MnO2 for colorimetric detection of uric acid in serum samples. RSC Adv 6(87):83738–83747

    Article  CAS  Google Scholar 

  17. Zhang SX, Xue SF, Deng JJ, Zhang M, Shi GY, Zhou TS (2016) Polyacrylic acid-coated cerium oxide nanoparticles: an oxidase mimic applied for colorimetric assay to organophosphorus pesticides. Biosens Bioelectron 85:457–463

    Article  CAS  Google Scholar 

  18. Pautler R, Kelly EY, Huang P-JJ, Cao J, Liu B, Liu J (2013) Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching. ACS Appl Mater Interfaces 5(15):6820–6825

    Article  CAS  Google Scholar 

  19. Liu J, Hu X, Hou S, Wen T, Liu W, Zhu X, Wu X (2011) Screening of inhibitors for oxidase mimics of au@Pt nanorods by catalytic oxidation of OPD. Chem Commun 47(39):10981–10983

    Article  CAS  Google Scholar 

  20. Guo R, Wang Y, Yu S, Zhu W, Zheng F, Liu W, Zhang D, Wang J (2016) Dual role of hydrogen peroxide on the oxidase-like activity of nanoceria and its application for colorimetric hydrogen peroxide and glucose sensing. RSC Adv 6(65):59939–59945

    Article  CAS  Google Scholar 

  21. Deng HH, Lin XL, Liu YH, Li KL, Zhuang QQ, Peng HP, Liu AL, Xia XH, Chen W (2017) Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 9(29):10292–10300

    Article  CAS  Google Scholar 

  22. Briganti S, Camera E, Picardo M (2003) Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res 16(2):101–110

    Article  Google Scholar 

  23. Bai M, Huang J, Zheng X, Song Z, Tang M, Mao W, Yuan L, Wu J, Weng X, Zhou X (2010) Highly selective suppression of melanoma cells by inducible DNA cross-linking agents: Bis(catechol) derivatives. J Am Chem Soc 132(43):15321–15327

    Article  CAS  Google Scholar 

  24. Sidhu JS, Singh N (2018) FRET and PET paired dual mechanistic carbon dots approach for TYRaseosinase sensing. J Mater Chem B 6(24):4139–4145

    Article  CAS  Google Scholar 

  25. Peng M, Wang Y, Fu Q, Sun F, Na N, Ouyang J (2018) Melanosome-targeting near-infrared fluorescent probe with large stokes shift for in situ quantification of TYRaseosinase activity and assessing drug effects on differently invasive melanoma cells. Anal Chem 90(10):6206–6213

    Article  CAS  Google Scholar 

  26. Lei C, Zhao X, Sun J, Yan X, Gao Y, Gao H, Zhu S, Wang H (2017) A simple and novel colorimetric assay for tyrosinase and inhibitor screening using 3,3′,5,5′-tetramethylbenzidine as a chromogenic probe. Talanta 175:457–462

    Article  CAS  Google Scholar 

  27. Freeman R, Elbaz J, Gill R, Zayats M, Willner I (2007) Analysis of dopamine and tyrosinase activity on ion-sensitive field-effect transistor (ISFET) devices. Chem A Eur J 13(26):7288–7293

    Article  CAS  Google Scholar 

  28. Teng Y, Jia X, Li J, Wang E (2015) Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Anal Chem 87(9):4897–4902

    Article  CAS  Google Scholar 

  29. Yang X, Luo Y, Zhuo Y, Feng Y, Zhu S (2014) Novel synthesis of gold nanoclusters templated with L-tyrosine for selective analyzing tyrosinase. Anal Chim Acta 840:87–92

    Article  CAS  Google Scholar 

  30. Wu X, Li L, Shi W, Gong Q, Ma H (2016) Near-infrared fluorescent probe with new recognition moiety for specific detection of tyrosinase activity: design, synthesis, and application in living cells and zebrafish. Angew Chem Int Ed 55(47):14728–14732

    Article  CAS  Google Scholar 

  31. Li H, Liu W, Zhang F, Zhu X, Huang L, Zhang H (2017) Highly selective fluorescent probe based on hydroxylation of phenylboronic acid pinacol ester for detection of tyrosinase in cells. Anal Chem 90(1):855–858

    Article  Google Scholar 

  32. Kong F, Liu H, Dong J, Qian W (2011) Growth-sensitive gold nanoshells precursor nanocomposites for the detection of L-DOPA and tyrosinase activity. Biosens Bioelectron 26(5):1902–1907

    Article  CAS  Google Scholar 

  33. Liu B, Huang P, Li J, Wu F (2017) Colorimetric detection of tyrosinase during the synthesis of kojic acid/silver nanoparticles under illumination. Sens Actuators B Chem 251:836–841

    Article  CAS  Google Scholar 

  34. Baek H, Rho H, Yoo J, Ahn S, Lee J, Lee J, Kim M, Kim D, Chang I (2008) The inhibitory effect of new hydroxamic acid derivatives on melanogenesis. B Korean Chem Soc 29(1):43–46

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (21675024, 21804021), the Program for Innovative Leading Talents in Fujian Province (2016B016), the Science and Technology Project of Fujian Province (2018 L3008), Natural Science Foundation of Fujian Province (2016 J01427, 2016 J06019), and Startup Fund for scientific research, Fujian Medical University (2017XQ1014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Ping Peng or Wei Chen.

Ethics declarations

The author(s) declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, HH., Lin, XL., He, SB. et al. Colorimetric tyrosinase assay based on catechol inhibition of the oxidase-mimicking activity of chitosan-stabilized platinum nanoparticles. Microchim Acta 186, 301 (2019). https://doi.org/10.1007/s00604-019-3451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3451-4

Keywords

Navigation