Skip to main content

Advertisement

Log in

ZnS quantum dots surface-loaded with zinc(II) ions as a viable fluorescent probe for glutathione

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The fluorescence of ZnS quantum dots in colloidal water solution changes very slightly on addition of glutathione (GSH) but is strongly enhanced in the presence of Zn(II) even in concentrations as low as 10 μM. The resulting Zn(II)-enhanced fluorescence is found to be quenched by GSH. In contrast to GSH, cysteine does not cause an effect. Response surface methodology was applied to optimize the experimental parameters. The best data can be obtained at 305/427 nm as excitation/emission wavelengths. These findings were used to design an indirect method for the fluorometric determination of GSH that has a 0.9 μM detection limit and a response that is linear in the 2.0–104.0 μM GSH concentration range. The relative standard deviation at a level of 65 μM of GSH (for n = 5) is 1.9%.

Schematic presentation of the detection strategy for glutathione and the influence of the mediator (Zn2+). Direct pathway shows that the glutathione cannot cause a change in the blue fluorescence of ZnS QDs. The presence of Zn2+ causes the enhancement of the fluorescence intensity, and this generates the indirect pathway to glutathione detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Di W, Zhang X, Qin W (2017) Single-layer MnO 2 nanosheets for sensitive and selective detection of glutathione by a colorimetric method. Appl Surf Sci 400:200–205. https://doi.org/10.1016/j.apsusc.2016.12.204

    Article  CAS  Google Scholar 

  2. Zhang Z, Jiao Y, Wang Y, Zhang S (2016) Core-shell self-assembly triggered via a thiol-disulfide exchange reaction for reduced glutathione detection and single cells monitoring. Sci Rep 6:29872–29879. https://doi.org/10.1038/srep29872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khalikova MA, Satinsky D, Solich P, Zinchenko AA, Zhilyakova ET, Novikov OO (2014) A high-performance liquid chromatography method with pre-column derivatization for the simultaneous determination of reduced glutathione, carnosine and taurine. Anal Methods 6:1475. https://doi.org/10.1039/c3ay42200c

    Article  CAS  Google Scholar 

  4. Tsikas D, Hanff E, Arinc A, Anke K (2016) Gas chromatographic – mass spectrometric analysis of the tripeptide glutathione in the electron - capture negative - ion chemical ionization mode. Amino Acids 48:593–598. https://doi.org/10.1007/s00726-015-2133-8

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Yang B, Li S, Yan B, Xu H, Zhang K, Shi Y, Zhai C, du Y (2017) Enhanced photo-electrochemical response of reduced graphene oxide and C 3 N 4 nanosheets for rutin detection. J Colloid Interface Sci 168:168–173. https://doi.org/10.1016/j.jcis.2017.07.059

    Article  CAS  Google Scholar 

  6. Guo J, Lin Y, Huang H, Zhang S, Huang T, Weng W (2017) One-pot fabrication of fluorescent carbon nitride nanoparticles with high crystallinity as a highly selective and sensitive sensor for free chlorine. Sensors Actuators B Chem 244:965–971. https://doi.org/10.1016/j.snb.2017.01.036

    Article  CAS  Google Scholar 

  7. Ou-yang J, Li C, Li Y et al (2017) A rhodamine-based fluorescent probe with high water solubility and its application in the detection of glutathione with unique specificity. Sensors Actuators B Chem 240:1165–1173. https://doi.org/10.1016/j.snb.2016.09.074

    Article  CAS  Google Scholar 

  8. Pan J, Zheng Z, Yang J, Wu Y, Lu F, Chen Y, Gao W (2017) A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots. Talanta 166:1–7

    Article  CAS  Google Scholar 

  9. Shu H, Wu X, Zhou B, Han Y, Jin M, Zhu J, Bao X (2017) Synthesis and evaluation of a novel fluorescent chemosensor for glutathione based on a rhodamine B and N - [ 4- ( carbonyl ) phenyl ] maleimide conjugate and its application in living cell imaging. Dyes Pigments 136:535–542. https://doi.org/10.1016/j.dyepig.2016.08.063

    Article  CAS  Google Scholar 

  10. Lou Y, Zhao Y, Chen J, Zhu J-J (2014) Metal ions optical sensing by semiconductor quantum dots. J Mater Chem C 2:595–613. https://doi.org/10.1039/c3tc31937g

    Article  CAS  Google Scholar 

  11. Jin Q, Li Y, Huo J, Zhao X (2016) The “off-on” phosphorescent switch of Mn-doped ZnS quantum dots for detection of glutathione in food, wine, and biological samples. Sensors Actuators B Chem 227:108–116. https://doi.org/10.1016/j.snb.2015.12.036

    Article  CAS  Google Scholar 

  12. Xu Y, Niu X, Zhang H, Xu L, Zhao S, Chen H, Chen X (2015) Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+ chemosensor. J Agric Food Chem 63:1747–1755. https://doi.org/10.1021/jf505759z

    Article  CAS  PubMed  Google Scholar 

  13. Diaz-diestra D, Thapa B, Beltran-huarac J, Weiner BR (2017) Biosensors and bioelectronics L-cysteine capped ZnS : Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Biosens Bioelectron 87:693–700. https://doi.org/10.1016/j.bios.2016.09.022

    Article  CAS  PubMed  Google Scholar 

  14. Karri SN, Male U, Srinivasan P (2018) Polyaniline salt catalyzed synthesis of hyperbranched polyester and its use as dopant in polyaniline salt for coating , fluorescence , and supercapacitor electrode. Ionics (Kiel) 25:191–202

    Article  Google Scholar 

  15. Cheng Z, He B, Zhou L (2014) A general one-step approach for in situ decoration of MoS 2 nanosheets with inorganic nanoparticles. J Mater Chem A 3:1042–1048. https://doi.org/10.1039/c4ta04946b

    Article  Google Scholar 

  16. Alizadeh N, Akbarinejad A (2015) Soluble fluorescent polymeric nanoparticles based on pyrrole derivatives: synthesis, characterization and their structure dependent sensing properties. J Mater Chem C 3:9910–9920. https://doi.org/10.1039/C5TC01982F

    Article  CAS  Google Scholar 

  17. Gong T, Liu J, Wu Y, Xiao Y, Wang X, Yuan S (2017) Biosensors and bioelectronics fluorescence enhancement of CdTe quantum dots by HBcAb-HRP for sensitive detection of H 2 O 2 in human serum. Biosens Bioelectron 92:16–20. https://doi.org/10.1016/j.bios.2017.01.048

    Article  CAS  PubMed  Google Scholar 

  18. Abdolmohammad-zadeh H, Rahimpour E (2016) Sensors and actuators B : chemical a novel chemosensor based on graphitic carbon nitride quantum dots and potassium ferricyanide chemiluminescence system for Hg ( II ) ion detection. Sensors Actuators B Chem 225:258–266. https://doi.org/10.1016/j.snb.2015.11.052

    Article  CAS  Google Scholar 

  19. Amouzegar Z, Afkhami A, Madrakian T (2017) Photoluminescence investigation of MPA–ZnS QDs interaction with selenite ion. J Iran Chem Soc 14:2475–2483. https://doi.org/10.1007/s13738-017-1182-1

    Article  CAS  Google Scholar 

  20. Shamsipur M, Rajabi HR (2014) Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion. Mater Sci Eng C 36:139–145. https://doi.org/10.1016/j.msec.2013.12.001

    Article  CAS  Google Scholar 

  21. Krężel A, Maret W (2016) The biological inorganic chemistry of zinc ions. Arch Biochem Biophys 611:3–19. https://doi.org/10.1016/j.abb.2016.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krezel A, Bal W (2004) Studies of zinc(II) and nickel(II) complexes of GSH, GSSG and their analogs shed more light on their biological relevance. Bioinorg Chem Appl 2:293–305. https://doi.org/10.1155/S1565363304000172

    Article  CAS  PubMed Central  Google Scholar 

  23. Krezel A, Wójcik J, Maciejczyk M, Bal W (2003) May GSH and L-His contribute to intracellular binding of zinc? Thermodynamic and solution structural study of a ternary complex. Chem Commun (Camb) 37:704–705. https://doi.org/10.1039/b300632h

    Article  CAS  Google Scholar 

  24. Lakowicz JR (2006) Quenching of fluorescence. In: Principles of fluorescence spectroscopy. pp 277–330

  25. Wu D, Chen Z, Huang G, Liu X (2014) ZnSe quantum dots based fluorescence sensors for Cu2+ ions. Sensors Actuators A Phys 205:72–78. https://doi.org/10.1016/j.sna.2013.10.020

    Article  CAS  Google Scholar 

  26. Liu J, Bao C, Zhong X, Zhao C, Zhu L (2010) Highly selective detection of glutathione using a quantum-dot-based OFF–ON fluorescent probe. Chem Commun 46:2971–2973. https://doi.org/10.1039/b924299f

    Article  CAS  Google Scholar 

  27. Gu J, Hu D, Wang W, Zhang Q, Meng Z, Jia X, Xi K (2015) Carbon dot cluster as an efficient “ off – on ” fluorescent probe to detect au ( III ) and glutathione. Biosens Bioelectron 68:27–33. https://doi.org/10.1016/j.bios.2014.12.027

    Article  CAS  PubMed  Google Scholar 

  28. Yu L, Li L, Ding Y, Lu Y (2016) A fluorescent switch sensor for glutathione detection based on Mn-doped CdTe quantum dots-methyl viologen nanohybrids. J Fluoresc 26:651–660. https://doi.org/10.1007/s10895-015-1751-6

    Article  CAS  PubMed  Google Scholar 

  29. Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J (2016) Multifunctional N , S co-doped carbon quantum dots with pH- and thermo-dependent switchable fl uorescent properties and highly selective detection of glutathione. Carbon N Y 104:169–178. https://doi.org/10.1016/j.carbon.2016.04.003

    Article  CAS  Google Scholar 

  30. Zhu H, Wang E, Li J, Wang J (2018) L-tyrosine methyl ester-stabilized carbon dots as fluorescent probes for the assays of biothiols. Anal Chim Acta 1006:83–89

    Article  CAS  Google Scholar 

  31. Ji D, Meng H, Ge J, Zhang L, Wang H, Bai D, Li J, Qu L, Li Z (2017) Ultrasensitive fluorometric glutathione assay based on a conformational switch of a G-quadruplex mediated by silver ( I ). Microchim Acta 184:3325–3332. https://doi.org/10.1007/s00604-017-2343-8

    Article  CAS  Google Scholar 

  32. Song Z, Dai X, Li M et al (2018) Biodegradable nanoprobe based on MnO 2 nanoflowers and graphene quantum dots for near infrared fluorescence imaging of glutathione in living cells. Microchim Acta 2:1–8

    CAS  Google Scholar 

  33. Yang R, Guo X, Jia L, Zhang Y (2017) A fluorescent B on-off-on ^ assay for selective recognition of Cu ( II ) and glutathione based on modified carbon nanodots , and its application to cellular imaging. Microchim Acta 184:1143–1150. https://doi.org/10.1007/s00604-017-2076-8

    Article  CAS  Google Scholar 

  34. Wu D, Li G, Chen X, et al (2017) Fluorometric determination and imaging of glutathione based on a thiol-triggered inner filter effect on the fluorescence of carbon dots. https://doi.org/10.1007/s00604-017-2187-2

  35. Yan F, Bai Z, Zu F et al (2019) Yellow-emissive carbon dots with a large stokes shift are viable fluorescent probes for detection and cellular imaging of silver ions and glutathione. Microchim Acta (2):1–11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Afkhami.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amouzegar, Z., Afkhami, A. & Madrakian, T. ZnS quantum dots surface-loaded with zinc(II) ions as a viable fluorescent probe for glutathione. Microchim Acta 186, 205 (2019). https://doi.org/10.1007/s00604-019-3310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3310-3

Keywords

Navigation