Skip to main content
Log in

Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type Cu-TCPP)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Ultrathin (<10 nm) nanosheets of a metal-organic framework (MOF-NSs) were prepared in high-yield and scalable production by a surfactant-assisted one-step method. The MOF-NSs possess distinguished affinity for ssDNA but not for dsDNA. This causes the fluorescence of the labeled DNA to be quenched. On binding to the target DNA (shown here for Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus), the labeled duplex is released and the fluorescence of the label is restored. The labels Texas Red, Cy3 and FAM were used and give red, red or green fluorescence depending on the kind of pathogen. The detection limits are 28 pM, 35 pM and 15 pM for the gene segments of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus, respectively.

Schematic of an ultrasensitive fluorescent biosensor for multiplex detection of pathogenic DNAs based on ultrathin MOF nanosheets (type Cu-TCPP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Du Y, Li BL, Wang E (2013) "fitting" makes "sensing" simple: label-free detection strategies based on nucleic acid aptamers. Acc Chem Res 46:203–213

    Article  CAS  Google Scholar 

  2. Jung C, Ellington AD (2014) Diagnostic applications applications of nucleic acid circuits. Acc Chem Res 47:1825–1835

    Article  CAS  Google Scholar 

  3. Zhao YX, Chen F, Li Q, Wang LH, Fan CH (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545

    Article  CAS  Google Scholar 

  4. Kong C, Wang Y, Fodjo EK, Yang GX, Han F, Shen XS (2017) Loop-mediated isothermal amplification for visual detection of Vibrio parahaemolyticus using gold nanoparticles. Microchim Acta 185:35–41

    Article  Google Scholar 

  5. Li HH, Zhang YW, Luo YL, Sun XP (2011) Nano-C-60: a novel, effective, fluorescent sensing platform for biomolecular detection. Small 7:1562–1568

    Article  CAS  Google Scholar 

  6. Wang XL, Niazi S, Yukun H, Sun WJ, Wu SJ, Duan N, Hun X, Wang ZP (2017) Homogeneous time-resolved FRET assay for the detection of Salmonella typhimurium using aptamer-modified NaYF4:Ce/Tb nanoparticles and a fluorescent DNA label. Microchim Acta 184:4021–4027

    Article  CAS  Google Scholar 

  7. Liu KY, Yan X, Mao BY, Wang S, Deng L (2016) Aptamer-based detection of Salmonella enteritidis using double signal amplification by Klenow fragment and dual fluorescence. Microchim Acta 183:643–649

    Article  CAS  Google Scholar 

  8. Chinnappan R, AlAmer S, Eissa S, Rahamn AA, Abu Salah KM, Zourob M (2017) Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Microchim Acta 185:61–69

    Article  Google Scholar 

  9. He QZ, Luo HQ, Tang L, Liu J, Chen KK, Zhang QF, Ning Y (2017) Nanographite-based fluorescent biosensing of Salmonella enteritidis by applying deoxyribonuclease-assisted recycling. Microchim Acta 184:3875–3882

    Article  CAS  Google Scholar 

  10. Zhang Y, Zheng B, Zhu CF, Zhang X, Tan CL, Li H, Chen B, Yang J, Chen JZ, Huang Y, Wang LH, Zhang H (2015) Single-layer transition metal dichalcogenide nanosheet based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv Mater 27:935–939

    Article  CAS  Google Scholar 

  11. Yuan YX, Wu SF, Shu F, Liu ZH (2014) An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem Commun 50:1095–1097

    Article  CAS  Google Scholar 

  12. Lin Y, Williams TV, Connell JW (2010) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1:277–283

    Article  Google Scholar 

  13. Wang QB, Wang W, Lei JP, Xu N, Gao FL, Ju HX (2013) Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal Chem 85:12182–12188

    Article  CAS  Google Scholar 

  14. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787

    Article  CAS  Google Scholar 

  15. Zhu CF, Zeng ZY, Li H, Li F, Fan CH, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001

    Article  CAS  Google Scholar 

  16. Li H, Eddaoudi M, O'Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  CAS  Google Scholar 

  17. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674

    Article  CAS  Google Scholar 

  18. Wu YF, Han JY, Xue P, Xu R, Kang YJ (2015) Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale 7:1753–1759

    Article  CAS  Google Scholar 

  19. Zhang HT, Zhang JW, Huang G, Du ZY, Jiang HL (2014) An amine-functionalized metal-organic framework as a sensing platform for DNA detection. Chem Commun 50:12069–12072

    Article  CAS  Google Scholar 

  20. Liu TZ, Hu R, Zhang X, Zhang KL, Liu Y, Zhang XB, Bai RY, Li D, Yang YH (2016) Metal-organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay. Anal Chem 88:12516–12523

    Article  CAS  Google Scholar 

  21. Shen WJ, Zhuo Y, Chai YQ, Yuan R (2015) Cu-based metal-organic frameworks as a catalyst to construct a ratiometric electrochemical aptasensor for sensitive lipopolysaccharide detection. Anal Chem 87:11345–11352

    Article  CAS  Google Scholar 

  22. Xiong CY, Wang HJ, Liang WB, Yuan YL, Yuan R, Chai YQ (2015) Luminescence-functionalized metal-organic frameworks based on a ruthenium(II) complex: a signal amplification strategy for electrogenerated chemiluminescence immunosensors. Chem Eur J 21:9825–9832

    Article  CAS  Google Scholar 

  23. Yang XL, Chen X, Hou GH, Guan RF, Shao R, Xie MH (2016) A multiresponsive metal-organic framework: direct chemiluminescence, photoluminescence, and dual tunable sensing applications. Adv Funct Mater 26:393–398

    Article  CAS  Google Scholar 

  24. Wang B, Lv XL, Feng D, Xie LH, Zhang J, Li M, Xie Y, Li JR, Zhou HC (2016) Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J Am Chem Soc 138:6204–6216

    Article  CAS  Google Scholar 

  25. Zhu X, Zheng HY, Wei XF, Lin ZY, Guo LH, Qiu B, Chen GN (2013) Metal-organic framework (MOF): a novel sensing platform for biomolecules. Chem Commun 49:1276–1278

    Article  CAS  Google Scholar 

  26. Hermosa C, Horrocks BR, Martinez JI, Liscio F, Gomez-Herrero J, Zamora F (2015) Mechanical and optical properties of ultralarge flakes of a metal-organic framework with molecular thickness. Chem Sci 6:2553–2558

    Article  CAS  Google Scholar 

  27. Peng Y, Li YS, Ban YJ, Jin H, Jiao WM, Liu XL, Yang WS (2014) Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346:1356–1359

    Article  CAS  Google Scholar 

  28. Xu H, Gao JK, Qian XF, Wang JP, He HJ, Cui YJ, Yang Y, Wang ZY, Qian GD (2016) Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J Mater Chem A 4:10900–10905

    Article  CAS  Google Scholar 

  29. Junggeburth SC, Diehl L, Werner S, Duppel V, Sigle W, Lotsch BV (2013) Ultrathin 2D coordination polymer nanosheets by surfactant-mediated synthesis. J Am Chem Soc 135:6157–6164

    Article  CAS  Google Scholar 

  30. Zhao MT, Wang YX, Ma QL, Huang Y, Zhang X, Ping JF, Zhang ZC, Lu QP, Yu YF, Xu H, Zhao YL, Zhang H (2015) Ultrathin 2D metal-organic framework nanosheets. Adv Mater 27:7372–7378

    Article  CAS  Google Scholar 

  31. Zhao SL, Wang Y, Dong JC, He CT, Yin HJ, An PF, Zhao K, Zhang XF, Gao C, Zhang LJ, Lv JW, Wang JX, Zhang JQ, Khattak AM, Khan NA, Wei ZX, Zhang J, Liu SQ, Zhao HJ, Tang ZY (2016) Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1:1–10

    Google Scholar 

  32. Lan LY, Chen DK, Yao Y, Peng XS, Wu J, Li YB, Ping JF, Ying YB (2018) Phase-dependent fluorescence quenching efficiency of MoS2 nanosheets and their applications in multiplex target biosensing. ACS Appl Mater Interfaces 10:42009–42017

    Article  CAS  Google Scholar 

  33. Wang Q, Wang W, Lei J, Xu N, Gao F, Ju H (2013) Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal Chem 85:12182–12188

    Article  CAS  Google Scholar 

  34. Wang WB, Liu LQ, Song SS, Xu LG, Kuang H, Zhu JP, Xu CL (2017) Identification and quantification of eight Listeria monocytogene serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Microchim Acta 184:715–724

    Article  CAS  Google Scholar 

  35. Duan N, Wu SJ, Zhang HL, Zou Y, Wang ZP (2018) Fluorometric determination of Vibrio parahaemolyticus using an F0F1-ATPase-based aptamer and labeled chromatophores. Microchim Acta 185:304–309

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from National Key Research and Development Program of China (No. 2017YFC1601700) and National Natural Science Foundation of China (No. 31401568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixian Wang.

Ethics declarations

The author declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Q., Chen, H., Ying, S. et al. Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type Cu-TCPP). Microchim Acta 186, 93 (2019). https://doi.org/10.1007/s00604-019-3226-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3226-y

Keywords

Navigation