Skip to main content
Log in

Gold nanoparticle-loaded hollow Prussian Blue nanoparticles with peroxidase-like activity for colorimetric determination of L-lactic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The intrinsic peroxidase-like activity of hollow Prussian Blue nanoparticle-loaded with gold nanoparticles (Au@HMPB NPs) were applied to oxidize the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 to give a blue-green coloration. The morphology of the Au@HMPB NPs and its peroxidase-mimicking activity was characterized in detail. The catalytic activity follows Michaelis-Menten kinetics and is higher than that of HMPB NPs not loaded with gold nanoparticles. The NPs were employed to detect L-lactic acid colorimetrically (at 450 nm) via detection of H2O2 that is generated during enzymatic oxidation by L-lactate oxidase (LOx). The limit of detection is 4.2 μM. The assay was successfully applied to the quantitation of L-lactic acid in spiker human serum samples.

Gold nanoparticle-loaded hollow Prussian Blue nanoparticles (Au@HMPB NPs) with peroxidase-like catalytic activity can oxidize the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. The nanoparticles were applied for the detection of L-lactic acid through detection of H2O2 that is generated by L-lactate oxidase (LOx) catalyzed oxidation of L-lactic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, Duncan CA, Harman EM, Henderson GN, Jenkinson S, Lachin JM, Lorenz A, Schneider SH, Siegel JH, Summer WR, Thompson D, Wolfe CL, Zorovich B (1992) A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. N Engl J Med 327(22):1564–1569

    Article  CAS  Google Scholar 

  2. Broder G, Weil MH (1964) Excess lactate: an index of reversibility of shock in human patients. Science 143(3613):1457–1459

    Article  CAS  Google Scholar 

  3. Tumang CA, Borges EP, Reis BF (2001) Multicommutation flow system for spectrophotometric l(+)lactate determination in silage material using an enzymatic reaction. Anal Chim Acta 438(1):59–65

    Article  CAS  Google Scholar 

  4. Goran JM, Lyon JL, Stevenson KJ (2011) Amperometric detection of l-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal Chem 83(21):8123–8129

    Article  CAS  Google Scholar 

  5. Brand A, Singer K, Koehl Gudrun E, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, Kastenberger M, Bogdan C, Schleicher U, Mackensen A, Ullrich E, Fichtner-Feigl S, Kesselring R, Mack M, Ritter U, Schmid M, Blank C, Dettmer K et al (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24(5):657–671

    Article  CAS  Google Scholar 

  6. Romero MR, Ahumada F, Garay F, Baruzzi AM (2010) Amperometric biosensor for direct blood lactate detection. Anal Chem 82(13):5568–5572

    Article  CAS  Google Scholar 

  7. He Y, Niu X, Shi L, Zhao H, Li X, Zhang W, Pan J, Zhang X, Yan Y, Lan M (2017) Photometric determination of free cholesterol via cholesterol oxidase and carbon nanotube supported Prussian blue as a peroxidase mimic. Microchim Acta 184(7):2181–2189

    Article  CAS  Google Scholar 

  8. Qu F, Li T, Yang M (2011) Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosens Bioelectron 26(9):3927–3931

    Article  CAS  Google Scholar 

  9. Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, Fu Y (2015) BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens Bioelectron 66:251–258

    Article  CAS  Google Scholar 

  10. Kim MI, Shim J, Li T, Lee J, Park HG (2011) Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing. Chem Eur J 17(38):10700–10707

    Article  CAS  Google Scholar 

  11. Guan J, Peng J, Jin X (2015) Synthesis of copper sulfide nanorods as peroxidase mimics for the colorimetric detection of hydrogen peroxide. Anal Methods 7(13):5454–5461

    Article  CAS  Google Scholar 

  12. Chu BH, Kang BS, Ren F, Chang CY, Wang YL, Pearton SJ, Glushakov AV, Dennis DM, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2008) Enzyme-based lactic acid detection using AlGaN∕GaN high electron mobility transistors with ZnO nanorods grown on the gate region. Appl Phys Lett 93(4):042114

    Article  Google Scholar 

  13. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  14. Jv Y, Li B, Cao R (2010) Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46(42):8017–8019

    Article  Google Scholar 

  15. Mu J, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48(19):2540–2542

    Article  CAS  Google Scholar 

  16. André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R, Schröder H-C, Müller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21(3):501–509

    Article  Google Scholar 

  17. Tian J, Liu Q, Asiri AM, Qusti AH, Al-Youbi AO, Sun X (2013) Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 5(23):11604–11609

    Article  CAS  Google Scholar 

  18. Su L, Feng J, Zhou X, Ren C, Li H, Chen X (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem 84(13):5753–5758

    Article  CAS  Google Scholar 

  19. Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184(2):323–342

    Article  CAS  Google Scholar 

  20. Zhang W, Ma D, Du J (2014) Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta 120:362–367

    Article  CAS  Google Scholar 

  21. Zeng K, Yang M, Liu Y-N, Rasooly A (2018) Dual function hollow structured mesoporous Prussian blue mesocrystals for glucose biosensors. Anal Methods 10(32):3951–3957

    Article  CAS  Google Scholar 

  22. Su L, Xiong Y, Yang H, Zhang P, Ye F (2016) Prussian blue nanoparticles encapsulated inside a metal–organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening. J Mater Chem B 4(1):128–134

    Article  CAS  Google Scholar 

  23. Michopoulos A, Kouloumpis A, Gournis D, Prodromidis MI (2014) Performance of layer-by-layer deposited low dimensional building blocks of graphene-Prussian blue onto graphite screen-printed electrodes as sensors for hydrogen peroxide. Electrochim Acta 146:477–484

    Article  CAS  Google Scholar 

  24. Wang T, Fu Y, Chai L, Chao L, Bu L, Meng Y, Chen C, Ma M, Xie Q, Yao S (2014) Filling carbon nanotubes with Prussian blue nanoparticles of high peroxidase-like catalytic activity for colorimetric chemo- and biosensing. Chem Eur J 20(9):2623–2630

    Article  CAS  Google Scholar 

  25. Han L, Li C, Zhang T, Lang Q, Liu A (2015) Au@Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-like activity and their application for one-pot analysis of glucose at nearly neutral pH. ACS Appl Mater Interfaces 7(26):14463–14470

    Article  CAS  Google Scholar 

  26. Lee Y, Garcia MA, Frey Huls NA, Sun S (2010) Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew Chem 122(7):1293–1296

    Article  Google Scholar 

  27. Tao Y, Lin Y, Huang Z, Ren J, Qu X (2013) Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv Mater 25(18):2594–2599

    Article  CAS  Google Scholar 

  28. Ming H, Shuhei F, Ryo O, Hiroaki S, Yoshihiro N, Julien R, Susumu K, Yusuke Y (2012) Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew Chem 124(4):1008–1012

    Article  Google Scholar 

  29. Kim M-C, Lee D, Jeong SH, Lee S-Y, Kang E (2016) Nanodiamond-gold nanocomposites with the peroxidase-like oxidative catalytic activity. ACS Appl Mater Interfaces 8(50):34317–34326

    Article  CAS  Google Scholar 

  30. Liu M, Zhao H, Chen S, Yu H, Quan X (2012) Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 6(4):3142–3151

    Article  CAS  Google Scholar 

  31. Komkova MA, Karyakina EE, Karyakin AA (2018) Catalytically synthesized Prussian blue nanoparticles defeating natural enzyme peroxidase. J Am Chem Soc 140(36):11302–11307

    Article  CAS  Google Scholar 

  32. Zheng XT, Yang HB, Li CM (2010) Optical detection of single cell lactate release for cancer metabolic analysis. Anal Chem 82(12):5082–5087

    Article  CAS  Google Scholar 

  33. Hu A-L, Liu Y-H, Deng H-H, Hong G-L, Liu A-L, Lin X-H, Xia X-H, Chen W (2014) Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and l-lactate detection. Biosens Bioelectron 61:374–378

    Article  CAS  Google Scholar 

  34. Ballesta-Claver J, Valencia-Mirón MC, Capitán-Vallvey LF (2008) One-shot lactate chemiluminescent biosensor. Anal Chim Acta 629(1):136–144

    Article  CAS  Google Scholar 

  35. Zhang L, Hou W, Lu Q, Liu M, Chen C, Zhang Y, Yao S (2016) Colorimetric detection of hydrogen peroxide and lactate based on the etching of the carbon based Au-Ag bimetallic nanocomposite synthesized by carbon dots as the reductant and stabilizer. Anal Chim Acta 947:23–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support of this work by the National Natural Science Foundation of China (No. 21575165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Yang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Zeng, K. & Yang, M. Gold nanoparticle-loaded hollow Prussian Blue nanoparticles with peroxidase-like activity for colorimetric determination of L-lactic acid. Microchim Acta 186, 121 (2019). https://doi.org/10.1007/s00604-018-3214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3214-7

Keywords

Navigation