Skip to main content
Log in

An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly selective and sensitive aptasensor is described for voltammetric determination of the pesticide chlorpyrifos (CPS). The sensor was constructed by modifying a glassy carbon electrode (GCE) with gold nanorods and a polymer that was molecularly imprinted with an aptamer against CPS. This results in double specific recognition. Under optimal conditions and a working potential as low as 0.22 V (vs. Ag/AgCl), the nanotools has a dynamic range that covers the 1.0 fM - 0.4 pM CPS concentration range, and the detection limit is 0.35 fM. This is lower than any of the previously reported methods. This MIP-aptasensor is selective over structural analogs, stable, and adequately reproducible. It was successfully applied to the determination of CPS in spiked food samples.

Impedimetric detection of Chlorpyrifos by using a Fe(CN)63−/4- probe based on double recognition of aptamer-molecular imprinted polymer onto a glassy carbon electrode modified with gold nanorod nanocomposite. The incubation with Chlorpyrifos lead to an increase of electron transfer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen D, Jiao Y, Jia H, Guo Y, Sun X, Wang X, Xu J (2015) Acetylcholinesterase biosensor for chlorpyrifos detection based on multi-walled carbon nanotubes-SnO2-chitosan nanocomposite modified screen-printed electrode. Int J Electrochem Sci 10:10491–10501

    CAS  Google Scholar 

  2. Talan A, Mishra A, Eremin SA, Narang J, Kumar A, Gandhi S (2018) Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosens Bioelectron 105:14–21

    Article  CAS  PubMed  Google Scholar 

  3. Lin GF, Wang YH, Li GC, Bai W, Zhang H, Wang SC (2014) Construction and application of molecularly imprinted film sensor on determination of chlorpyrifos in water. Adv Mater Res 936:843–849

    Article  CAS  Google Scholar 

  4. Sun X, Gao C, Zhang L, Yan M, Yu J, Ge S (2017) Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection. Sensors Actuators B Chem 251:1–8

    Article  CAS  Google Scholar 

  5. Uygun ZO, Dilgin Y (2013) A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos. Sensors Actuators B Chem 188:78–84

    Article  CAS  Google Scholar 

  6. Szpyrka E, Matyaszek A, Slowik-Borowiec M (2017) Dissipation of chlorantraniliprole, chlorpyrifos-methyl and indoxacarb-insecticides used to control codling moth (Cydia Pomonella L.) and leafrollers (Tortricidae) in apples for production of baby food. Sci Pollut Res 24(13):12128–12135

    Article  CAS  Google Scholar 

  7. Seddik H, Z Marstani Z, ALazzam T (2017) Trace level determination of insecticide using gas chromatography, and the application for residual monitoring in local Syrian vegetables. Arab J Chem 10: 212–218

  8. Xiao Z, He M, Chen B, Hu B (2016) Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples. Talanta 156–157:126–133

    Article  PubMed  CAS  Google Scholar 

  9. Walton I, Davis M, Munro L, Catalano VJ, Cragg PJ, Huggins MT et al (2012) A fluorescent dipyrrinone oxime for the detection of pesticides and other organophosphates. Org Lett 14(11):2686–2689

    Article  CAS  PubMed  Google Scholar 

  10. Shim JY, Kim YA, Lee EH, Lee YT, Lee HS (2008) Development of enzyme-linked immunosorbent assays for the organosphorus insecticide EPN. J Agric Food Chem 56(24):11551–11559

    Article  CAS  PubMed  Google Scholar 

  11. Shahdost-fard F, Roushani M (2017) Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe. Biosens Bioelectron 87:724–731

    Article  CAS  PubMed  Google Scholar 

  12. Basnar B, Elnathan R, Willner L (2006) Following aptamer-thrombin binding by force measurements. Anal Chem 78(11):3638–3642

    Article  CAS  PubMed  Google Scholar 

  13. Fang L, Lu Z, Wei H, Wang E (2008) A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal Chim Acta 628(1):80–86

    Article  CAS  Google Scholar 

  14. Nagatoishi S, Tanaka Y, Tsumoto K (2007) Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions. Biochem Biophys Res Commun 352(3):812–817

    Article  CAS  PubMed  Google Scholar 

  15. Lu Y, Li X, Zhang L, Yu P, Su L, Mao L (2008) Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as a probe. Anal Chem 80(6):1883–1890

    Article  CAS  PubMed  Google Scholar 

  16. Shahdost-fard F, Roushani M (2017) The use of a signal amplification strategy for the fabrication of a TNT impedimetric nanoaptasensor based on electrodeposited NiONPs immobilized onto a GCE surface. Sensors Actuators B Chem 246:848–853

    Article  CAS  Google Scholar 

  17. Ghanbari K, Roushani M (2018) A nanohybrid probe based on double recognition of an aptamer MIP grafted onto a MWCNTs-chit nanocomposite for sensing hepatitis C virus core antigen. Sensors Actuators B Chem 258:1066–1071

    Article  CAS  Google Scholar 

  18. Langille MR, Personick ML, Zhang J, Mirkin CA (2012) Defining rules for the shape evolution of gold nanoparticles. J Am Chem Soc 134(35):14542–14554

    Article  CAS  PubMed  Google Scholar 

  19. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067

    Article  CAS  Google Scholar 

  20. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  CAS  Google Scholar 

  21. Jana NR (2005) Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1(8–9):875–882

    Article  CAS  PubMed  Google Scholar 

  22. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord. Chem Rev 249(17–18):1870–1901

    CAS  Google Scholar 

  23. Shu Y, Chen J, Xu Q, Wei Z, Liu F, Lu R, Xu S, Hu X (2017) MoS2 nanosheet–au nanorod hybrids for highly sensitive amperometric detection of H2O2 in living cells. J Mater Chem B 5:1446–1453

    Article  CAS  PubMed  Google Scholar 

  24. Yang G, Zhao F (2015) Electrochemical sensor for dimetridazole based on novel gold nanoparticles@molecularly imprinted polymer. Sensors Actuators B Chem 220:1017–1022

    Article  CAS  Google Scholar 

  25. Wang Sh SG, Chen Z, Liang Y, Zhou Q, Pan Y, Zhai H (2018) Constructing a novel composite of molecularly imprinted polymer-coated AuNPs electrochemical sensor for the determination of 3-nitrotyrosine. Electrochim Acta 259:893–902

    Article  CAS  Google Scholar 

  26. Riskin M, Ran TV, Bourenko T, Granot E, Willner I (2008) Imprinting of molecular recognition sites through electropolymerization of functionalized au nanoparticles: development of an electrochemical TNT sensor on п-donor-acceptor interactions. J Am Chem Soc 130(30):9726–9733

    Article  CAS  PubMed  Google Scholar 

  27. daSilva H, Pacheco JG, MCSMagalhães J, Viswanathan S, Cristina Delerue-Matos C (2014) MIP-graphene-modified glassy carbon electrode for the determination of trimethoprim. Biosens Bioelectron 52:56–61

    Article  CAS  Google Scholar 

  28. Ensafi AA, Amini M, Rezaei B (2018) Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol a. Microchim Acta 185:265

    Article  CAS  Google Scholar 

  29. Malitesta C, Mazzotta E, Picca RA, Poma A, Chianella I, Piletsky SA (2012) MIP sensors- the electrochemical approach. Anal Bioanal Chem 402(5):1827–1846

    Article  CAS  PubMed  Google Scholar 

  30. Aghaei A, Milani Hosseini MR, Najafi M (2010) A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer. Electrochim Acta 55(5):1503–1508

    Article  CAS  Google Scholar 

  31. Gholivand MB, Karimian N (2015) Fabrication of a highly selective and sensitive voltammetric ganciclovir sensor based on electropolymerized molecularly imprinted polymer and gold nanoparticles on multiwall carbon nanotubes/glassy carbon electrode. Sensors Actuators B Chem 215:471–479

    Article  CAS  Google Scholar 

  32. Lian W, Liu S, Yu J, Xing X, Li J, Cui M, Huang J (2012) Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/grapheme gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens Bioelectron 38:163–169

    Article  CAS  PubMed  Google Scholar 

  33. Liu YT, Deng J, Xiao XL, Ding L, Yuan YL, Li H, Li XT, Yan XN, Wang LL (2011) Electrochemical sensor based on a poly(Para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochim Acta 56:4595–4602

    Article  CAS  Google Scholar 

  34. Zhao X, Liu Y, Zuo J, Zhang J, Zhu L, Zhang J (2017) Rapid and sensitive determination of tartrazine using a molecularly imprinted copolymer modified carbon electrode (MIP-PmDB/PoPD-GCE). J Electroanal Chem 785:90–95

    Article  CAS  Google Scholar 

  35. Li S, Liu C, Yin G, Qun Zhang Q, Luo J, Wu N (2017) Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin. Biosens Bioelectron 91:687–691

    Article  CAS  PubMed  Google Scholar 

  36. Jiao Y, Jia H, Guo Y, Zhang H, Wang Z, Sun X, Zhao J (2016) An ultrasensitive ptasensor for chlopyrifos based on ordered mesoporous carbon/ferrocene hybrid a multiwalled carbon nanotubes. RSC Adv 6(63):58541–58548

    Article  CAS  Google Scholar 

  37. Wen W, Huang JY, Bao T, Zhou J, Xia HX, Zhang XH, Wang SF, Zhao YD (2016) Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen. Biosens Bioelectron 83:142–148

    Article  CAS  PubMed  Google Scholar 

  38. Narang J, Malhotra N, Singh G, Pundir CS (2015) Electrochemical impediometric detection of anti-HIV drug taking gold nanorods as a sensing interface. Biosens Bioelectron 66:332–337

    Article  CAS  PubMed  Google Scholar 

  39. Arvand M, Gholizadeh TM (2013) Gold nanorods–graphene oxide nanocomposite incorporated carbonnanotube paste modified glassy carbon electrode for voltammetric determination of indomethacin. Sensors Actuators B Chem 186:622–632

    Article  CAS  Google Scholar 

  40. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  PubMed  Google Scholar 

  41. Chakraborty S, Joshi P, Shanker V, Ansari ZA, Singh SP, Chakrabarti P (2011) Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir 27:7722–7731

    Article  CAS  PubMed  Google Scholar 

  42. Pissuwan D, Valenzuela SM, Cortie MB (2008) Prospects for gold nanorod particles in diagnostic and therapeutic applications. Biotechnol Genet Eng Rev 25:93–112

    Article  CAS  PubMed  Google Scholar 

  43. Jiao Y, Houa W, Fua J, Guoa Y, Suna X, Wanga X, Zhaoa J (2017) A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos. Sensors Actuators B Chem 243:1164–1170

    Article  CAS  Google Scholar 

  44. Chen S, Chen X, Xia T, Ma Q (2016) A novel electrochemiluminescence sensor for the detection of nitroaniline based on the nitrogen-doped graphene quantum dots. Biosens Bioelectron 85:903–908

    Article  CAS  PubMed  Google Scholar 

  45. Xie C, Li H, Li S, Gao S (2011) Surface molecular imprinting for chemiluminescence detection of the organophosphate pesticide chlorpyrifos. Microchim Acta 174:311–320

    Article  CAS  Google Scholar 

  46. Wei M, Zeng G, Lu Q (2014) Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchim Acta 181:121–127

    Article  CAS  Google Scholar 

  47. Lütfi Yola M, Atar N (2017) A highly efficient nanomaterial with molecular imprinting polymer: carbon nitride nanotubes decorated with graphene quantum dots for sensitive electrochemical determination of chlorpyrifos. J Electrochem Soc 164(6):B223–B229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Roushani.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roushani, M., Nezhadali, A. & Jalilian, Z. An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods. Microchim Acta 185, 551 (2018). https://doi.org/10.1007/s00604-018-3083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3083-0

Keywords

Navigation