Skip to main content
Log in

A Cu(II)-anchored unzipped covalent triazine framework with peroxidase-mimicking properties for molecular imprinting–based electrochemiluminescent detection of sulfaquinoxaline

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method of electrochemiluminescent quantitation of the antibiotic sulfaquinoxaline (SQX). It relies on the use of a molecularly imprinted polymer and a Cu(II)-anchored unzipped covalent triazine framework (UnZ-CCTF) with excellent dispersibility, electrical conductivity, and peroxidaze-like activity. The framework was prepared by unzipping a covalent triazine framework under retention of basic triazine units. It was morphologically and structurally characterized by a range of instrumental techniques. The excellent peroxidase-mimicking effect of UnZ-CCTF on the electrochemiluminescence of the luminol/H2O2 system was exploited to design an ultrasensitive SQX assay with a 1.0–20 pM detection range and a detection limit of 0.76 pM (at 3δ/m). The technique was used for SQX quantitation in spiked milk samples, achieving recoveries of 94.0–104.8%.

Scheme of the sulfaquinoxaline molecularly imprinted electrochemiluminescence sensor based on Cu-anchored unzipped covalent triazine frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun J, Zeng Q, Tsang DCW, Zhu LZ, Li XD (2017) Antibiotics in the agricultural soils from the Yangtze River Delta, China. Chemosphere 189:301–308. https://doi.org/10.1016/j.chemosphere.2017.09.040

    Article  CAS  PubMed  Google Scholar 

  2. Zhang H, Zhou Y, Huang Y, Wu L, Liu X, Luo Y (2016) Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures. Chemosphere 152:229–237. https://doi.org/10.1016/j.chemosphere.2016.02.111

    Article  CAS  PubMed  Google Scholar 

  3. Grenni P, Ancona V, Barra Caracciolo A (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39. https://doi.org/10.1016/j.microc.2017.02.006

    Article  CAS  Google Scholar 

  4. Wu K, Wang H, Zhou C, Amina Y, Si Y (2018) Efficient oxidative removal of sulfonamide antibiotics from the wastewater by potassium ferrate. J Adv Oxid Technol 21:97–108. https://doi.org/10.26802/jaots.2017.0053

    Article  Google Scholar 

  5. Amelin VG, Volkova NM, Timofeev AA, Tret’yakov AV (2015) QuEChERS sample preparation in the simultaneous determination of residual amounts of quinolones, sulfanilamides, and amphenicols in food using HPLC with a diode-array detector. J Anal Chem 70:1076–1084. https://doi.org/10.1134/s1061934815090026

    Article  CAS  Google Scholar 

  6. Kim HJ, Jeong MH, Park HJ, Kim WC, Kim JE (2016) Development of an immunoaffinity chromatography and HPLC-UV method for determination of 16 sulfonamides in feed. Food Chem 196:1144–1149. https://doi.org/10.1016/j.foodchem.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Zhu N, Chen T, Ma Y, Li Q (2018) A green cyclodextrin metal-organic framework as solid-phase extraction medium for enrichment of sulfonamides before their HPLC determination. Microchem J 138:401–407. https://doi.org/10.1016/j.microc.2018.01.038

    Article  CAS  Google Scholar 

  8. Hoff RB, Meneghini L, Pizzolato TM, Peralba MCR, Díaz-Cruz MS, Barceló D (2014) Structural elucidation of sulfaquinoxaline metabolism products and their occurrence in biological samples using high-resolution orbitrap mass spectrometry. Anal Chem 86:5579–5586. https://doi.org/10.1021/ac501132r

    Article  CAS  PubMed  Google Scholar 

  9. Hu FY, He LM, Yang JW, Bian K, Wang ZN, Yang HC, Liu YH (2014) Determination of 26 veterinary antibiotics residues in water matrices by lyophilization in combination with LC–MS/MS. J Chromatogr B 949-950:79–86. https://doi.org/10.1016/j.jchromb.2014.01.008

    Article  CAS  Google Scholar 

  10. Juan-Borrás M, Periche A, Domenech E, Escriche I (2015) Routine quality control in honey packaging companies as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS. Food Control 50:243–249. https://doi.org/10.1016/j.foodcont.2014.08.021

    Article  CAS  Google Scholar 

  11. Portolés T, Rosales LE, Sancho JV, Santos FJ, Moyano E (2015) Gas chromatography–tandem mass spectrometry with atmospheric pressure chemical ionization for fluorotelomer alcohols and perfluorinated sulfonamides determination. J Chromatogr A 1413:107–116. https://doi.org/10.1016/j.chroma.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Liu L, Xu L, Song S, Kuang H, Cui G, Xu C (2017) Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods. Nano Res 10:2833–2844. https://doi.org/10.1007/s12274-017-1490-x

    Article  CAS  Google Scholar 

  13. Jiang W, Beloglazova NV, Wang Z, Jiang H, Wen K, de Saeger S, Luo P, Wu Y, Shen J (2015) Development of a multiplex flow-through immunoaffinity chromatography test for the on-site screening of 14 sulfonamide and 13 quinolone residues in milk. Biosens Bioelectron 66:124–128. https://doi.org/10.1016/j.bios.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  14. Conzuelo F, Campuzano S, Gamella M, Pinacho DG, Reviejo AJ, Marco MP, Pingarrón JM (2013) Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens Bioelectron 50:100–105. https://doi.org/10.1016/j.bios.2013.06.019

    Article  CAS  PubMed  Google Scholar 

  15. Alain W, HP R, QJ P (2016) Field-enhanced sample injection micelle-to-solvent stacking capillary zone electrophoresis-electrospray ionization mass spectrometry of antibiotics in seawater after solid-phase extraction. Electrophoresis 37:1139–1142. https://doi.org/10.1002/elps.201500448

    Article  CAS  Google Scholar 

  16. de Assis DCS, da Silva GR, Lanza IP, Ribeiro ACSR, Lana ÂMQ, Lara LJC, de Figueiredo TC, Cançado SV (2016) Evaluation of the presence and levels of enrofloxacin, ciprofloxacin, sulfaquinoxaline and oxytetracycline in broiler chickens after drug administration. PLoS One 11:e0166402. https://doi.org/10.1371/journal.pone.0166402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang N, Wang P, Jiang D (2016) Covalent organic frameworks: a materials platform for structural and functional designs. Nat Rev Mater 1:16068. https://doi.org/10.1038/natrevmats.2016.68

    Article  CAS  Google Scholar 

  18. Hu AL, Deng HH, Zheng XQ, Wu YY, Lin XL, Liu AL, Xia XH, Peng HP, Chen W, Hong G-L (2017) Self-cascade reaction catalyzed by CuO nanoparticle-based dual-functional enzyme mimics. Biosens Bioelectron 97:21–25. https://doi.org/10.1016/j.bios.2017.05.037

    Article  CAS  PubMed  Google Scholar 

  19. Tian L, Qi J, Oderinde O, Yao C, Song W, Wang Y (2018) Planar intercalated copper (II) complex molecule as small molecule enzyme mimic combined with Fe3O4 nanozyme for bienzyme synergistic catalysis applied to the microRNA biosensor. Biosens Bioelectron 110:110–117. https://doi.org/10.1016/j.bios.2018.03.045

    Article  CAS  PubMed  Google Scholar 

  20. Xiong Y, Qin Y, Su L, Ye F (2017) Bioinspired synthesis of Cu2+-modified covalent triazine framework: a new highly efficient and promising peroxidase mimic. Chem Eur J 23:11037–11045. https://doi.org/10.1002/chem.201701513

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45(8):2137–2211. https://doi.org/10.1039/C6CS00061D

    Article  CAS  PubMed  Google Scholar 

  22. Jia M, Zhang Z, Li J, Ma X, Chen L, Yang X (2018) Molecular imprinting technology for microorganism analysis. TrAC - Trend Anal Chem 106:190–201. https://doi.org/10.1016/j.trac.2018.07.011

    Article  CAS  Google Scholar 

  23. Li X, Zhang L, Wei X, Li J (2013) A sensitive and renewable chlortoluron molecularly imprinted polymer sensor based on the gate-controlled catalytic electrooxidation of H2O2 on magnetic nano-NiO. Electroanalysis 25:1286–1293. https://doi.org/10.1002/elan.201200428

    Article  CAS  Google Scholar 

  24. Zhang L, Li J, Zeng Y (2015) Molecularly imprinted magnetic nanoparticles for determination of the herbicide chlorotoluron by gate-controlled electro-catalytic oxidation of hydrazine. Microchim Acta 182:249–255. https://doi.org/10.1007/s00604-014-1326-2

    Article  CAS  Google Scholar 

  25. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876. https://doi.org/10.1038/nature07872

    Article  CAS  PubMed  Google Scholar 

  26. Xiong Y, Su L, He X, Duan Z, Zhang Z, Chen Z, Xie W, Zhu D, Luo Y (2017) Colorimetric determination of copper ions based on regulation of the enzyme-mimicking activity of covalent triazine frameworks. Sensors Actuators B Chem 253:384–391. https://doi.org/10.1016/j.snb.2017.06.167

    Article  CAS  Google Scholar 

  27. Zhou C, Wang S, Zhao Z, Shi Z, Yan S, Zou Z (2018) A facet-dependent Schottky-junction electron shuttle in a BiVO4{010}–Au–Cu2O Z-scheme photocatalyst for efficient charge separation. Adv Funct Mater 28:1801214. https://doi.org/10.1002/adfm.201801214

    Article  CAS  Google Scholar 

  28. Kung T-A, Tsai C-W, Ku BC, Wang W-H (2015) A generic and rapid strategy for determining trace multiresidues of sulfonamides in aquatic products by using an improved QuEChERS method and liquid chromatography–electrospray quadrupole tandem mass spectrometry. Food Chem 175:189–196. https://doi.org/10.1016/j.foodchem.2014.11.133

    Article  CAS  PubMed  Google Scholar 

  29. He J, Song L, Zhou G, Zhao L (2017) The rapid analysis of antibiotics in animal meat and egg using a novel SEP method and UPLC–MS/MS. Chromatographia 80:1329–1342. https://doi.org/10.1007/s10337-017-3366-3

    Article  CAS  Google Scholar 

  30. Hu G, Sheng W, Zhang Y, Wang J, Wu X, Wang S (2016) Upconversion nanoparticles and monodispersed magnetic polystyrene microsphere based fluorescence immunoassay for the detection of sulfaquinoxaline in animal-derived foods. J Agric Food Chem 64:3908–3915. https://doi.org/10.1021/acs.jafc.6b01497

    Article  CAS  PubMed  Google Scholar 

  31. Hu G, Sheng W, Li J, Zhang Y, Wang J, Wang S (2017) Fluorescent quenching immune chromatographic strips with quantum dots and upconversion nanoparticles as fluorescent donors for visual detection of sulfaquinoxaline in foods of animal origin. Anal Chim Acta 982:185–192. https://doi.org/10.1016/j.aca.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  32. Soleymanpour A, Rezvani SA (2016) Development of a novel carbon paste sensor for determination of micromolar amounts of sulfaquinoxaline in pharmaceutical and biological samples. Mater Sci Eng C 58:504–509. https://doi.org/10.1016/j.msec.2015.08.034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hainan Province of China (No. 218MS088), the Central Public-Interest Scientific Institution Basal Research Fund for the Chinese Academy of Tropical Agricultural Sciences (Nos. 1630082017001 and 1630082018003) and Guangxi Natural Science Foundation of China (2018GXNSFAA138089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xionghui Ma or Yuhao Xiong.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 2.91 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, S., Pang, C. et al. A Cu(II)-anchored unzipped covalent triazine framework with peroxidase-mimicking properties for molecular imprinting–based electrochemiluminescent detection of sulfaquinoxaline. Microchim Acta 185, 546 (2018). https://doi.org/10.1007/s00604-018-3079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3079-9

Keywords

Navigation