Skip to main content
Log in

Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An aptamer based colorimetric assay is described for the determination of zearalenone (ZEN). It is based on the inhibition of the peroxidase-mimicking activity of gold nanoparticles (AuNPs) by the ZEN aptamer. However, in the presence of ZEN, the aptamer is bound by ZEN and can no longer inhibit the peroxidase-mimicking activity of AuNPs. The color change of solution is related to ZEN concentration and observed with bare eyes. Under optimal conditions, the absorbance (at 630 nm) increases linearly in the ZEN concentration range of 10–250 ng·mL−1, and the limit of detection is 10 ng·mL−1. The specificity of the assay was verified by studying the effect of potential interferents. The recoveries from ZEN spiked corn and corn oil range from 92 to 110%, and the relative standard deviations are between 2.4 and 6.4%. The results are in good agreement with those obtained by an ELISA.

Schematic presentation of colorimetric assay for rapid and sensitive determination of zearalenone (ZEN) based on the inhibition of ZEN aptamer on the the peroxidase-like activity of gold nanoparticle (AuNPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu J, Hu Y, Zhu G, Zhou X, Jia L, Zhang T (2014) Highly sensitive detection of zearalenone in feed samples using competitive surface-enhanced Raman scattering immunoassay. J Agric Food Chem 62:8325–8332. https://doi.org/10.1021/jf503191e

    Article  CAS  Google Scholar 

  2. Chun HS, Choi EH, Chang HJ, Choi SW, Eremin SA (2009) A fluorescence polarization immunoassay for the detection of zearalenone in corn. Anal Chim Acta 639:83–89. https://doi.org/10.1016/j.aca.2009.02.048

    Article  CAS  Google Scholar 

  3. Liu N, Nie D, Zhao Z, Meng X, Wu A (2015) Ultrasensitive immunoassays based on biotin–streptavidin amplified system for quantitative determination of family zearalenones. Food Control 57:202–209. https://doi.org/10.1016/j.foodcont.2015.03.049

    Article  CAS  Google Scholar 

  4. Al-Taher F, Banaszewski K, Jackson L, Zweigenbaum J, Ryu D, Cappozzo J (2013) Rapid method for the determination of multiple mycotoxins in wines and beers by LC-MS/MS using a stable isotope dilution assay. J Agric Food Chem 61:2378–2384. https://doi.org/10.1021/jf304729f

    Article  CAS  Google Scholar 

  5. Turner NW, Bramhmbhatt H, Szabo-Vezse M, Poma A, Coker R, Piletsky SA (2015) Analytical methods for determination of mycotoxins: an update (2009–2014). Anal Chim Acta 901:12–33. https://doi.org/10.1016/j.aca.2015.10.013

    Article  CAS  Google Scholar 

  6. Li SJ, Sheng W, Wen W, Gu Y, Wang JP, Wang S (2018) Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone. Microchim Acta 185(4):238. https://doi.org/10.1007/s00604-018-2778-6

    Article  CAS  Google Scholar 

  7. Liu N, Nie DX, Tan YL, Zhao ZY, Liao YC, Wang H et al (2017) An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim Acta 184:147–153. https://doi.org/10.1007/s00604-016-1996-z

    Article  CAS  Google Scholar 

  8. Zhang XY, Eremin SA, Wen K, Yu XZ, Li CL, Ke YB et al (2017) Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the zearalenone class of mycotoxins in maize. J Agric Food Chem 65:2240–2247. https://doi.org/10.1021/acs.jafc.6b05614

    Article  CAS  Google Scholar 

  9. Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56:555–583. https://doi.org/10.1146/annurev.med.56.062904.144915

    Article  CAS  Google Scholar 

  10. Liu LH, Zhou XH, Shi HC (2015) Portable optical aptasensor for rapid detection of mycotoxin with a reversible ligand-grafted biosensing surface. Biosens Bioelectron 72:300–305. https://doi.org/10.1016/j.bios.2015.05.033

    Article  CAS  Google Scholar 

  11. Vasilescu A, Marty JL (2017) Aptasensors, an analytical solution for mycotoxins detection. Compr Anal Chem 77:101–146. https://doi.org/10.1016/bs.coac.2017.05.006

    Article  Google Scholar 

  12. Ruchika CH, Singh J, Sachdev TS, Basu T, Malhotra BD (2016) Recent advances in mycotoxins detection. Biosens Bioelectron 81:532–545. https://doi.org/10.1016/j.bios.2016.03.004

    Article  CAS  Google Scholar 

  13. Wu H, Liu R, Kang X, Liang C, Lv L, Guo Z (2018) Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Microchim Acta 185(1):27. https://doi.org/10.1007/s00604-017-2592-6

    Article  CAS  Google Scholar 

  14. Taghdisi SM, Danesh NM, Ramezani M, Sarreshtehdar AE, Abnous K (2018) A novel colorimetric aptasensor for zearalenone detection based on nontarget-induced aptamer walker, gold nanoparticles and exonuclease-assisted recycling amplification. ACS Appl Mater Interfaces 10(15):12504–12509. https://doi.org/10.1021/acsami.8b02349

    Article  CAS  Google Scholar 

  15. Goud KY, Hayat A, Satyanarayana M et al (2017) Aptamer-based zearalenone assay based on the use of a fluorescein label and a functional graphene oxide as a quencher. Microchim Acta 184(11):4401–4408. https://doi.org/10.1007/s00604-017-2487-6

    Article  CAS  Google Scholar 

  16. Feng CJ, Dai S, Wang L (2014) Optical aptasensors for quantitative detection of small biomolecules: a review. Biosens Bioelectron 59:64–74. https://doi.org/10.1016/j.bios.2014.03.014

    Article  CAS  Google Scholar 

  17. Lan LY, Yao Y, Ping JF, Ying YB (2017) Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants. ACS Appl Mater Interfaces 9:23287–23301. https://doi.org/10.1021/acsami.7b03937

    Article  CAS  Google Scholar 

  18. Esfahani MR, Pallem VL, Stretz HA, Martha JM (2017) Extinction, emission, and scattering spectroscopy of 5–50 nm citrate-coated gold nanoparticles: an argument for curvature effects on aggregation. Spectrochim Acta A Mol Biomol Spectrosc 175:100–109. https://doi.org/10.1016/j.saa.2016.11.052

    Article  CAS  Google Scholar 

  19. Comotti M, Della Pina C, Matarrese R, Rossi M (2004) The catalytic activity of naked gold particles. Angew Chem Int Ed 43:5812–5815. https://doi.org/10.1002/anie.200460446

    Article  CAS  Google Scholar 

  20. Lin YH, Ren JS, Qu XG (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105. https://doi.org/10.1021/ar400250z

    Article  CAS  Google Scholar 

  21. Shah J, Purohit R, Singh R, Karakoti AS, Singh S (2015) ATP-enhanced peroxidase-like activity of gold nanoparticles. J Colloid Interface Sci 456:100–107. https://doi.org/10.1016/j.jcis.2015.06.015

    Article  CAS  Google Scholar 

  22. Yun J, Li BX, Cao R (2010) Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46:8017–8019. https://doi.org/10.1039/c0cc02698k

    Article  CAS  Google Scholar 

  23. Jiang X, Sun CJ, Guo Y (2015) Peroxidase-like activity of apoferritin paired gold clusters for glucose detection. Biosens Bioelectron 64:165–170. https://doi.org/10.1016/j.bios.2014.08.078

    Article  CAS  Google Scholar 

  24. Wang L, Yang W, Li T et al (2017) Colorimetric determination of thrombin by exploiting a triple enzyme-mimetic activity and dual-aptamer strategy. Microchim Acta 184(9):3145–3151. https://doi.org/10.1007/s00604-017-2327-8

    Article  CAS  Google Scholar 

  25. Hu L, Liao H, Feng L, Wang M, Fu W (2018) Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Anal Chem 90(10):6247–6252. https://doi.org/10.1021/acs.analchem.8b00885

    Article  CAS  Google Scholar 

  26. Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014) Aptamer-controlled reversible inhibition of gold Nanozyme activity for pesticide sensing. Anal Chem 86:11937–11941. https://doi.org/10.1021/ac5028726

    Article  CAS  Google Scholar 

  27. Yan J, Huang Y, Zhang C, Fang Z, Bai W, Yan M, Zhu C, Chen A (2017) Aptamer based photometric assay for the antibiotic sulfadimethoxine based on the inhibition and reactivation of the peroxidase-like activity of gold nanoparticles. Microchim Acta 184(1):59–63. https://doi.org/10.1007/s00604-016-1994-1

    Article  CAS  Google Scholar 

  28. Le LC, Cruz-Aguado JA, Penner GA (2011) DNA ligand for aflatoxin and zearalenone. US, WO/2011/020198. http://www.freepatentsonline.com/WO2011020198.html

  29. Li L, Li B (2009) Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst 134:1361–1365. https://doi.org/10.1039/b819842j

    Article  CAS  Google Scholar 

  30. Wu S, Liu L, Duan N, Li Q, Zhou Y, Wang Z (2018) An aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J Agric Food Chem 66:1949–1954. https://doi.org/10.1021/acs.jafc.7b05326

    Article  CAS  Google Scholar 

  31. Wu ZZ, Xu E, Muhammad FJC, Jin ZY, Irudayaraj J (2017) Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles. Food Chem 230:673–680. https://doi.org/10.1016/j.foodchem.2017.03.100

    Article  CAS  Google Scholar 

  32. Hizir MS, Top M, Balcioglu M, Rana M, Robertson NM, Shen F, Sheng J, Yigit MV (2016) Multiplexed activity of perAuxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal Chem 88(1):600–605. https://doi.org/10.1021/acs.analchem.5b03926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (2016QNJH14) and Key Scientific and Technological Project of Henan Province (162102310084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Xie.

Ethics declarations

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1.83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Zhao, R., Feng, S. et al. Colorimetric zearalenone assay based on the use of an aptamer and of gold nanoparticles with peroxidase-like activity. Microchim Acta 185, 535 (2018). https://doi.org/10.1007/s00604-018-3078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3078-x

Keywords

Navigation