Skip to main content
Log in

Nanostructured molybdenum oxide in a 3D metal organic framework and in a 2D polyoxometalate network for extraction of chlorinated benzenes prior to their quantification by GC–MS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A three–dimensional metal organic framework (3D–MOF) and a two–dimensional polyoxometalate (2D–POM), both incorporating nanostructured molybdenum (VI) oxide, were synthesized and implemented for headspace needle trap extraction of traces of chlorobenzenes (CBs). The 3D–MOF of type {(Mo2O6)(4,4′–bpy)}n and the 2D–POM of type [4,4′–bpy][Mo7O22] were synthesized by a solvothermal process and characterized by FT–IR, powder X–ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetry, energy dispersive X–ray, elemental mapping and Brunner–Emmet–Teller adsorption analyses. The 3D–MOF proved to be superior. Following thermal desorption, the CBs (monochlorobenzene, 1,4–dichlorobenzene, 1,2–dichlorobenzene, 1,2,4–trichlorobenzene and 1,2,3,4-tetrachlorobenzene) were quantified by GC–MS. Under optimized conditions, the calibration plots are linear in the 1–1000 ng.L−1 concentration range, and the limits of detection range from 0.2 to 2 ng.L−1. The intra– and inter–day relative standard deviations for three replicates at levels of 10 and 200 ng.L−1 are in the range of 5–12% and 10–15%, respectively. The needle–to–needle reproducibility was also found to be in the range of 6–13%. The application of the method to the analysis of various spiked real water samples resulted in recoveries between 84 and 114%.

A comparison of extraction efficiency between 3D–MOF and 2D–POM, in which 3D–MOF is superior to isolate organic pollutants, due to possession of more 4,4′–bpy ligands and interaction sites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Santos F, Sarrion M, Galceran M (1997) Analysis of chlorobenzenes in soils by headspace solid–phase microextraction and gas chromatography–ion trap mass spectrometry. J Chromatogr A 771:181–189. https://doi.org/10.1016/S0021-9673(97)00132-5

    Article  CAS  Google Scholar 

  2. He Y, Wang Y, Lee HK (2000) Trace analysis of ten chlorinated benzenes in water by headspace solid–phase microextraction. J Chromatogr A 874:149–154. https://doi.org/10.1016/S0021-9673(00)00067-4

    Article  CAS  PubMed  Google Scholar 

  3. Najafabadi ME, Bagheri H (2018) Wireless electrochemical preparation of gradient nanoclusters consisting of copper (II), stearic acid and montmorillonite on a copper wire for headspace in–tube microextraction of chlorobenzenes. Microchim Acta 185:80. https://doi.org/10.1007/s00604-017-2549-9

    Article  CAS  Google Scholar 

  4. Saraji M, Mehrafza N (2015) Polysiloxane coated steel fibers for solid–phase microextraction of chlorobenzenes. Microchim Acta 182:841–848. https://doi.org/10.1007/s00604-014-1395-2

    Article  CAS  Google Scholar 

  5. Pawliszyn J (2003) Sample preparation: quo vadis? Anal Chem 75:2543–2558. https://doi.org/10.1021/ac034094h

    Article  CAS  PubMed  Google Scholar 

  6. Xiao Z, He M, Chen B, Hu B (2016) Polydimethylsiloxane/metal–organic frameworks coated stir bar sorptive extraction coupled to gas chromatography–flame photometric detection for the determination of organophosphorus pesticides in environmental water samples. Talanta 156:126–133. https://doi.org/10.1016/j.talanta.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  7. Bagheri H, Banihashemi S, Karimi Zandian F (2016) Microextraction of antidepressant drugs into syringes packed with a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrrole. Microchim Acta 183:195–202. https://doi.org/10.1007/s00604-015-1606-5

    Article  CAS  Google Scholar 

  8. Bagheri H, Aghakhani A (2011) Novel nanofiber coatings prepared by electrospinning technique for headspace solid–phase microextraction of chlorobenzenes from environmental samples. Anal Methods 3:1284–1289. https://doi.org/10.1039/C0AY00766H

    Article  CAS  Google Scholar 

  9. Polo–Luque M, Simonet B, Valcárcel M (2013) Solid phase extraction–capillary electrophoresis determination of sulphonamide residues in milk samples by use of C18–carbon nanotubes as hybrid sorbent materials. Analyst 138:3786–3791. https://doi.org/10.1039/C3AN00319A

    Article  PubMed  Google Scholar 

  10. Bagheri H, Zeinali S, Baktash MY (2017) A single–step synthesized supehydrophobic melamine formaldehyde foam for trace determination of volatile organic pollutants. J Chromatogr A 1525:10–16. https://doi.org/10.1016/j.chroma.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  11. Liu S, Tang Z (2010) Polyoxometalate–based functional nanostructured films: current progress and future prospects. Nano Today 5:267–281. https://doi.org/10.1016/j.nantod.2010.05.006

    Article  CAS  Google Scholar 

  12. Ammam M (2013) Polyoxometalates: formation, structures, principal properties, main deposition methods and application in sensing. J Mater Chem A 1:6291–6312. https://doi.org/10.1039/C3TA01663C

    Article  CAS  Google Scholar 

  13. Amiri A, HR S–M, Zonoz FM (2018) A hybrid material composed of a polyoxometalate of type BeW12O40 and an ionic liquid immobilized onto magnetic nanoparticles as a sorbent for the extraction of organophosphorus pesticides prior to their determination by gas chromatography. Microchim Acta 185:176. https://doi.org/10.1007/s00604-018-2713-x

    Article  CAS  Google Scholar 

  14. Zhang Z, Xu J, Hussain D, Feng YQ (2016) Polyoxometalate incorporated porous polymer monoliths, a versatile separation media for nano liquid chromatography. J Chromatogr A 1453:71–77. https://doi.org/10.1016/j.chroma.2016.05.049

    Article  CAS  PubMed  Google Scholar 

  15. Rowsell JL, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14. https://doi.org/10.1016/j.micromeso.2004.03.034

    Article  CAS  Google Scholar 

  16. Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın Özgür A, Hupp JT (2012) Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021. https://doi.org/10.1021/ja3055639

    Article  CAS  PubMed  Google Scholar 

  17. Najafi M, Abbasi A (2016) Masteri–Farahani M, Janczak J. Sonochemical synthesis of a nanosized coordination polymer with catalytic activity for selective epoxidation of olefins ChemistrySelect 1:5374–5379. https://doi.org/10.1002/slct.201601236

    Article  CAS  Google Scholar 

  18. Liu D, Lu K, Poon C, Lin W (2013) Metal–organic frameworks as sensory materials and imaging agents. Inorg Chem 53:1916–1924. https://doi.org/10.1021/ic402194c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tian T, Zeng Z, Vulpe D, Casco ME, Divitini G, Midgley PA (2018) Silvestre–Albero J, Tan JC, Moghadam PZ, Fairen–Jimenez D. A sol–gel monolithic metal–organic framework with enhanced methane uptake Nat Mater 17:174–179. https://doi.org/10.1038/nmat5050

    Article  CAS  PubMed  Google Scholar 

  20. Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, Zou X (2016) One–pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc 138:962–968. https://doi.org/10.1021/jacs.5b11720

    Article  CAS  PubMed  Google Scholar 

  21. Asiabi M, Mehdinia A, Jabbari A (2017) Spider–web–like chitosan/MIL–68 (Al) composite nanofibers for high–efficient solid phase extraction of Pb (II) and cd (II). Microchim Acta 184:4495–4501. https://doi.org/10.1007/s00604-017-2473-z

    Article  CAS  Google Scholar 

  22. Safari M, Yamini Y, Masoomi MY, Morsali A (2017) Mani–Varnosfaderani A. Magnetic metal–organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP–AES Microchim Acta 184:1555–1564. https://doi.org/10.1007/s00604-017-2133-3

    Article  CAS  Google Scholar 

  23. Rocío-Bautista P, González-Hernández P, Pino V, Pasán J, Afonso AM (2017) Metal–organic frameworks as novel sorbents in dispersive–based microextraction approaches. Trends Anal Chem 90:114–134. https://doi.org/10.1016/j.trac.2017.03.002

    Article  CAS  Google Scholar 

  24. Huang Z, Lee HK (2015) Micro–solid–phase extraction of organochlorine pesticides using porous metal–organic framework MIL–101 as sorbent. J Chromatogr A 1401:9–16. https://doi.org/10.1016/j.chroma.2015.04.052

    Article  CAS  PubMed  Google Scholar 

  25. Bagheri H, Javanmardi H, Abbasi A, Banihashemi S (2016) A metal organic framework–polyaniline nanocomposite as a fiber coating for solid phase microextraction. J Chromatogr A 1431:27–35. https://doi.org/10.1016/j.chroma.2015.12.077

    Article  CAS  PubMed  Google Scholar 

  26. Zang X, Zhang G, Chang Q, Zhang X, Wang C, Wang Z (2015) Metal organic framework MIL–101 coated fiber for headspace solid phase microextraction of volatile aromatic compounds. Anal Methods 7:918–923. https://doi.org/10.1039/C4AY02540G

    Article  CAS  Google Scholar 

  27. Burtch NC, Jasuja H, Walton KS (2014) Water stability and adsorption in metal–organic frameworks. Chem Rev 114:10575–10612. https://doi.org/10.1021/cr5002589

    Article  CAS  PubMed  Google Scholar 

  28. Yu LQ, Yan XP (2013) Covalent bonding of zeolitic imidazolate framework–90 to functionalized silica fibers for solid–phase microextraction. Chem Commun 49:2142–2144. https://doi.org/10.1039/C3CC00123G

    Article  CAS  Google Scholar 

  29. Lord HL, Zhan W, Pawliszyn J (2010) Fundamentals and applications of needle trap devices. a critical review Anal Chim Acta 677:3–18. https://doi.org/10.1016/j.aca.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Li J, Xu H (2017) Graphene/polyaniline electrodeposited needle trap device for the determination of volatile organic compounds in human exhaled breath vapor and A549 cell. RSC Adv 7:11959–11968. https://doi.org/10.1039/C6RA25453E

    Article  CAS  Google Scholar 

  31. Zang X, Liang W, Chang Q, Wu T, Wang C, Wang Z (2017) Determination of volatile organic compounds in pen inks by a dynamic headspace needle trap device combined with gas chromatography–mass spectrometry. J Chromatogr A 1513:27–34. https://doi.org/10.1016/j.chroma.2017.07.030

    Article  CAS  PubMed  Google Scholar 

  32. Najafi M, Abbasi A, Masteri-Farahani M, Rodrigues VH (2014) Catalytic epoxidation of olefins by nanolayered polyoxomolybdate [4,4´-H2bipy][Mo7O22].(H2O). J Sci I R Iran 25:119–125

    Google Scholar 

  33. Cui CP, Dai JC, Du WX, Fu ZY, Hu SM, Wu LM, Wu XT (2002) Synthesis, structure and fluorescence of a 3–D polymer {(Mo4O12)(4,4′–bipy)2}n. Polyhedron 21:175–179. https://doi.org/10.1016/S0277-5387(01)00975-5

    Article  CAS  Google Scholar 

  34. Baktash MY, Bagheri H (2017) A superhydrophobic silica aerogel with high surface area for needle trap microextraction of chlorobenzenes. Microchim Acta 184:2151–2156. https://doi.org/10.1007/s00604-017-2212-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Research Council of Sharif University of Technology is profoundly acknowledged for supporting this work [Grant number G940603].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Bagheri.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 4.73 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, H., Karimi Zandian, F., Javanmardi, H. et al. Nanostructured molybdenum oxide in a 3D metal organic framework and in a 2D polyoxometalate network for extraction of chlorinated benzenes prior to their quantification by GC–MS. Microchim Acta 185, 536 (2018). https://doi.org/10.1007/s00604-018-3070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3070-5

Keywords

Navigation