Skip to main content
Log in

A ratiometric fluorescent core-shell nanoprobe for sensing and imaging of zinc(II) in living cell and zebrafish

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A zinc(II)-responsive ratiometric fluorescent core-shell nanoprobe (referred to as QPNPs) is described. It consist of an optimized combination of an internal reference dye (TBAP) encapsulated in the core, and a Zn(II)-specific indicator dye (PEIQ) in the shell. The nanoprobe was synthesized via single-step graft copolymerization induced by tert-butyl hydroperoxide at 80 °C. QPNPs exhibit a well-defined core-shell nanostructure and well-resolved dual emissions after photoexcitation at 380 nm. After exposure to Zn(II), the QPNPs display a green fluorescence peaking at ~500 nm that increases with the concentration of Zn(II), while the pink fluorescence of the porphine-derived reference dye peaking at ~650 nm remains unchanged. This results in color change from pink to green and thus enables Zn(II) to be detected both spectroscopically and with bare eyes. Zn(II) can be quantified with a 3.1 nM detection limit. The core-shell structured nanoprobe was also applied to real-time imaging of Zn(II) in living HeLa cells and in zebrafish. This work establishes a reliable approach to synthesize ratiometric fluorescent nanoprobes. It enables such nanoprobes to be prepared also by those not skilled in nanomaterial synthesis.

A zinc(II)-responsive core-shell nanoprobe (referred to as QPNP) is synthesized via single-step graft copolymerization. Zn(II) can be quantitated with a 3.1 nM detection limit by the QPNPs through ratiometric fluorescence strategy (PEIQ as the Zn(II) indicator and TBAP as the reference dye).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O'Halloran TV (1993) Transition metals in control of gene expression. Science 261:715–725. https://doi.org/10.1126/science.8342038

    Article  CAS  PubMed  Google Scholar 

  2. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085. https://doi.org/10.1126/science.271.5252.1081

    Article  CAS  PubMed  Google Scholar 

  3. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462. https://doi.org/10.1038/nrn1671

    Article  CAS  Google Scholar 

  4. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224. https://doi.org/10.1126/science.1124618

    Article  CAS  PubMed  Google Scholar 

  5. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549. https://doi.org/10.1021/cr078203u

    Article  CAS  PubMed  Google Scholar 

  6. Nolan EM, Lippard SJ (2009) Small-molecule fluorescent sensors for investigating zinc metalloneuro-chemistry. Acc Chem Res 42:193–203. https://doi.org/10.1021/ar8001409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo XB, Wu WB, Deng F, Chen DZ, Luo SL, Au C (2014) Quantum dot-based turn-on fluorescent probe for imaging intracellular zinc(II) and cadmium(II) ions. Microchim Acta 181:1361–1367. https://doi.org/10.1007/s00604-014-1264-z

    Article  CAS  Google Scholar 

  8. Wu QA, Zhou M, Shi J, Li QJ, Yang MY, Zhang ZX (2017) Synthesis of water-soluble Ag2S quantum dots with fluorescence in the second near-infrared window for turn-on detection of Zn(II) and Cd(II). Anal Chem 89:6616–6623. https://doi.org/10.1021/acs.analchem.7b00777

    Article  CAS  PubMed  Google Scholar 

  9. Ruedas-Rama MJ, Hall EAH (2009) Multiplexed energy transfer mechanisms in a dual-function quantum dot for zinc and manganese. Analyst 134:159–169. https://doi.org/10.1039/b814879a

    Article  CAS  PubMed  Google Scholar 

  10. Xu H, Miao R, Fang Z, Zhong XH (2011) Quantum dot-based "turn-on" fluorescent probe for detection of zinc and cadmium ions in aqueous media. Anal Chim Acta 687:82–88. https://doi.org/10.1016/j.aca.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Zhang ZM, Shi YP, Pan Y, Cheng X, Zhang LL, Chen JY, Li MJ, Yi CQ (2014) Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+. J Mater Chem B 2:5020–5027. https://doi.org/10.1039/c4tb00677a

    Article  CAS  Google Scholar 

  12. Yang MM, Kong WQ, Li H, Liu J, Huang H, Liu Y, Kang ZH (2015) Fluorescent carbon dots for sensitive determination and intracellular imaging of zinc(II) ion. Microchim Acta 182:2443–2450. https://doi.org/10.1007/s00604-015-1592-7

    Article  CAS  Google Scholar 

  13. Shi YP, Chen ZH, Cheng X, Pan Y, Zhang H, Zhang ZM, Li CW, Yi CQ (2014) A novel dual-emission ratiometric fluorescent nanoprobe for sensing and intracellular imaging of Zn2+. Biosens Bioelectron 61:397–403. https://doi.org/10.1016/j.bios.2014.05.050

    Article  CAS  PubMed  Google Scholar 

  14. Rastogi SK, Pal P, Aston DE, Bitterwolf TE, Branen AL (2011) 8-aminoquinoline functionalized silica nancoparticles: a fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension. ACS Appl Mater Interfaces 3:1731–1739. https://doi.org/10.1021/am2002394

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Fu CH, Ren XL, Liu HY, Li LL, Meng XW (2015) Fluorescence switching method for cascade detection of salicylaldehyde and zinc(II) ion using protein protected gold nanoclusters. Biosens Bioelectron 74:322–328. https://doi.org/10.1016/j.bios.2015.06.034

    Article  CAS  PubMed  Google Scholar 

  16. Hashemi N, Vaezi Z, Sedghi M, Naderi-Manesh H (2018) Hemoglobin-incorporated iron quantum clusters as a novel fluorometric and colorimetric probe for sensing and cellular imaging of Zn(II) and cysteine. Microchim Acta 185:60. https://doi.org/10.1007/s00604-017-2600-x

    Article  CAS  Google Scholar 

  17. Li W, Fang B, Jin M, Tian Y (2017) Two-photon ratiometric fluorescence probe with enhanced absorption cross section for imaging and biosensing of zinc ions in hippocampal tissue and zebrafish. Anal Chem 89:2553–2560. https://doi.org/10.1021/acs.analchem.6b04781

    Article  CAS  Google Scholar 

  18. Wu L, Guo QS, Liu YQ, Sun QJ (2015) Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn Zn2+ using a dual-emission silica-coated quantum dots mixture. Anal Chem 87:5318–5323. https://doi.org/10.1021/acs.analchem.5b00514

    Article  CAS  PubMed  Google Scholar 

  19. Han ZX, Zhang XB, Li Z, Gong YJ, Wu XY, Jin Z, He CM, Jian LX, Zhang J, Shen GL (2010) Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn2+ using a rhodamine spirolactam as a trigger. Anal Chem 82:3108–3113. https://doi.org/10.1021/ac100376a

    Article  CAS  Google Scholar 

  20. Xu Z, Baek KH, Kim HN, Cui J, Qian X, Spring DR, Shin I, Yoon J (2010) Zn(II)-triggered amide tautomerization produces a highly Zn(II)-selective, cell-permeable, and ratiometric fluorescent sensor. J Am Chem Soc 132:601–610. https://doi.org/10.1021/ja907334j

    Article  CAS  PubMed  Google Scholar 

  21. You Y, Lee S, Kim T, Ohkubo K, Chae WS, Fukuzumi S, Jhon GJ, Nam W, Lippard SJ (2011) Phosphorescent sensor for biological mobile zinc. J Am Chem Soc 133:18328–18342. https://doi.org/10.1021/ja207163r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu J, Tang A, Law LP, Feng M, Ho KM, Lee DKL, Harris FW, Li P (2005) Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjug Chem 16:139–146. https://doi.org/10.1021/bc049895l

    Article  CAS  PubMed  Google Scholar 

  23. Chen J, Zeng F, Wu S, Su J, Zhao J, Tong Z (2009) A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles. Nanotechnology 20:365502–365507. https://doi.org/10.1088/0957-4484/20/36/365502

    Article  Google Scholar 

  24. Shi YP, Yi CQ, Zhang Z, Zhang H, Li M, Yang M, Jiang Q (2013) Peptide-bridged assembly of hybrid nanomaterial and its application for caspase-3 detection. ACS Appl Mater Interfaces 5:6494–6501. https://doi.org/10.1021/am401935y

    Article  CAS  PubMed  Google Scholar 

  25. Wang XD, Stolwijk JA, Lang T, Sperber M, Meier RJ, Wegener J, Wolfbeis OS (2012) Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J Am Chem Soc 134:17011–17014. https://doi.org/10.1021/ja308830e

    Article  CAS  PubMed  Google Scholar 

  26. Wang XD, Meier RJ, Wolfbeis OS (2012) A fluorophore-doped polymer nanomaterial for referenced imaging of pH and temperature with sub-micrometer resolution. Adv Funct Mater 22:4202–4207. https://doi.org/10.1002/adfm.201200813

    Article  CAS  Google Scholar 

  27. Xu W, Lu S, Xu M, Jiang Y, Wang Y, Chen X (2016) Simultaneous imaging of intracellular pH and O2 using functionalized semiconducting polymer dots. J Mater Chem B 4:292–298. https://doi.org/10.1039/c5tb02071a

    Article  CAS  Google Scholar 

  28. Stich MIJ, Schaeferling M, Wolfbeis OS (2010) Multicolor fluorescent and permeation-selective microbeads enable simultaneous sensing of pH, oxygen, and temperature. Adv Mater 21:2216–2220. https://doi.org/10.1002/adma.200803575

    Article  CAS  Google Scholar 

  29. Jiang P, Guo Z (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248:205–229. https://doi.org/10.1016/j.cct.2003.10.013

    Article  CAS  Google Scholar 

  30. Frausto da Silva JRR, Williams RJP (1991) The biological chemistry of the elements: the inorganic chemistry of life. Clarendon Press, Oxford

    Google Scholar 

  31. Boussif O, Lezoualc’H F, Zanta M, Mergny M, Scherman D, Demeneix B, Behr JP, Lezoualch F, Lezoualc'H F, Merqny M, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92:7297–7301. https://doi.org/10.1073/pnas.92.16.7297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou H, Chen J, Sutter E, Feygenson M, Aronson MC, Wong SS (2010) Water-dispersible, multifunctional, magnetic, luminescent silica-encapsulated composite nanotubes. Small 6:412–420. https://doi.org/10.1002/smll.200901276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from Guangdong-HongKong Technology Cooperation Funding Scheme (2016A050503027), Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (2014TQ01R417), and the Fundamental Research Funds for the Central Universities (Grant No. 17lgjc09) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Yi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

The experimental details for PEIQ synthesis and QPNPs selectivity, 1HNMR spectra, TEM image of QPNPs and QNPs, FTIR and the deconvoluted XPS spectra of QPNPs, the stability of QPNPs and photostability of QPNPs, TBAP release from QPNPs, the response time curve of QPNPs upon reacting Zn(II), the pH effects on the ratio I500/I657 of QPNPs, photostability of QPNPs in the absence and presence of Zn(II), the cytotoxicity and hemolytic potential of QPNPs, superposition of phase-contrast as well as fluorescence images of HeLa cells upon incubation with QPNPs in the presence of Zn(II), tabulating comparison of different optical sensors for Zn(II) determination, and analytical results of the quantitation of Zn(II) in spiked cell extract samples, are supplied as Supporting Information. (DOCX 1121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, Q., Ma, J. et al. A ratiometric fluorescent core-shell nanoprobe for sensing and imaging of zinc(II) in living cell and zebrafish. Microchim Acta 185, 523 (2018). https://doi.org/10.1007/s00604-018-3066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3066-1

Keywords

Navigation