Skip to main content
Log in

A metal organic framework prepared from benzene-1,3,5-tricarboxylic acid and copper(II), and functionalized with various polysulfides as a sorbent for selective sorption of trace amounts of heavy metal ions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Novel composites were obtained via direct assembly of polysulfides (Sx2−, X = 3, 4, 6) on the surface of a metal organic framework (MOF; type benzene-1,3,5-tricarboxylic/Cu(II). They are referred to as Sx-MOFs and were used for highly selective and efficient extraction of ultra-trace amounts of heavy metal ions from aqueous solutions. The structure of the Sx-MOFs was characterized by Raman spectroscopy, FT-IR, X-ray diffraction, and scanning electron microscopy. The Raman spectra of Sx-MOF is similar to the bare MOF and shows the MOFs structure to be well retained after Sx functionalization. The selective interaction of Sx with soft metal ions and the high surface area of MOFs resulted in excellent affinity and selectivity for ions such as Hg(II). The Sx-MOFs of type S4-MOF had the highest distribution coefficient Kd value (~107) and best extraction recovery (~100%) for Hg(II). The S4-MOF also has high selectivity in the following order: Hg(II) > > Pb(II) > Zn(II) > Ni(II) > Co(II). The binding process of the metals occurs via M–S bonding. The ions were quantified by inductively coupled plasma optical emission spectrometry (ICP-OES). The detection limit for Hg(II) is 0.13 μg L−1. The S4-MOF was applied to the extraction of trace metal ions from natural and contaminated waters and data were compared with other sorbets. The results revealed that S4-MOF is an excellent adsorbent for sorption of heavy metal ions even in the presence of the relatively high concentration of other ions.

A composite was synthesized via direct assembly of polysulfides (Sx2−, X = 3, 4, 6) on surface of the metal organic framework (Sx-MOF) and was used for selective and efficient extraction of ultra-trace amounts of heavy metal ions from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rudd ND, Wang H, Fuentes-Fernandez EMA, Teat SJ, Chen F, Stephen Hall G, Chabal YJ, Li J (2016) Highly efficient luminescent metal–organic framework for the simultaneous detection and removal of heavy metals from water. ACS Appl Mater Interfaces 8:30294–30303. https://doi.org/10.1021/acsami.6b10890

    Article  CAS  PubMed  Google Scholar 

  2. Wang H, Huang W, Tang L, Chen Y, Zhang Y, Wu M, Song Y, Wen S (2017) Electrospun nanofibrous mercury filter: efficient concentration and determination of trace mercury in water with high sensitivity and tunable dynamic range. Anal Chim Acta 982:96–103. https://doi.org/10.1016/j.aca.2017.06.011

    Article  CAS  PubMed  Google Scholar 

  3. Mansoorian HJ, Mahvi AH, Jonidi Jafari A (2014) Removal of lead and zinc from battery industry wastewater using electrocoagulation process: influence of direct and alternating current by using iron and stainless steel rod electrodes. Sep Purif Technol 135:165–175. https://doi.org/10.1016/j.seppur.2014.08.012

    Article  CAS  Google Scholar 

  4. Taghizadeh M, Asgharinezhad AA, Pooladi M, Barzin M, Abbaszadeh A, Tadjarodi A (2013) A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology. Microchim Acta 180:1073–1084. https://doi.org/10.1007/s00604-013-1010-y

    Article  CAS  Google Scholar 

  5. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  6. Mirzaei M, Behzadi M, Mahmoud Abadi N, Beizaei A (2011) Simultaneous separation/preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid–liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. J Hazard Mater 186:1739–1743. https://doi.org/10.1016/j.jhazmat.2010.12.080

    Article  CAS  PubMed  Google Scholar 

  7. Landaburu-Aguirre J, Pongracz E, Peramaki P, Keiski RL (2010) Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: use of response surface methodology to improve understanding of process performance and optimization. J Hazard Mater 180:524–534. https://doi.org/10.1016/j.jhazmat.2010.04.066

    Article  CAS  PubMed  Google Scholar 

  8. Uygun DA, Jurado-Sánchez B, Uygun M, Wang J (2016) Self-propelled chelation platforms for efficient removal of toxic metals. Environ Sci 3:559–566. https://doi.org/10.1039/C6EN00043F

    Article  CAS  Google Scholar 

  9. Dabrowski A, Hubicki Z, Podkoscielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106. https://doi.org/10.1016/j.chemosphere.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  10. Feist B, Mikula B (2014) Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry. Food Chem 147:302–306. https://doi.org/10.1016/j.foodchem.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  11. Ma Sh CQ, Li H, Wang P, Islam SM, Gu Q, Yang X, Kanatzidis MG (2014) Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides. J Mater Chem A 2:10280–10289. https://doi.org/10.1039/C4TA01203H

    Article  Google Scholar 

  12. Dong Z, Wang D, Liu X, Pei X, Chena L, Jin J (2014) Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J Mater Chem A 2:5034–5040. https://doi.org/10.1039/C3TA14751G

    Article  CAS  Google Scholar 

  13. Guo B, Deng F, Zhao Y, Luo X, Luo Sh AC (2014) Magnetic ion-imprinted and–SH functionalized polymer for selective removal of Pb (II) from aqueous samples. Appl Surf Sci 292:438–446. https://doi.org/10.1016/j.apsusc.2013.11.156

    Article  CAS  Google Scholar 

  14. Hemmati M, Rajabi M, Asghari A (2018) Magnetic nanoparticle based solid-phase extraction of heavy metal ions: a review on recent advances. Microchim Acta 185:160–192. https://doi.org/10.1007/s00604.018.2670.4

    Article  Google Scholar 

  15. Salarian M, Ghanbarpour A, Behbahani M, Bagheri S, Bagheri A (2014) A metal-organic framework sustained by a nanosized Ag12 cuboctahedral node for solid-phase extraction of ultra traces of lead (II) ions. Microchim Acta 181:999–1007. https://doi.org/10.1007/s00604-014-1200-2

    Article  CAS  Google Scholar 

  16. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674. https://doi.org/10.1021/cr300014x

    Article  CAS  PubMed  Google Scholar 

  17. Sohrabi MR, Matbouie Z, Asgharinezhad AA, Dehghani A (2013) Solid phase extraction of cd (II) and Pb (II) using a magnetic metal-organic framework, and their determination by FAAS. Microchim Acta 180:589–597. https://doi.org/10.1007/s00604-013-0952-4

    Article  CAS  Google Scholar 

  18. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Ferey G, Couvreur P, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178. https://doi.org/10.1038/nmat2608

    Article  CAS  PubMed  Google Scholar 

  19. Hu YH, Zhang L (2010) Hydrogen storage in metal–organic frameworks. Adv Mater 22:17–30. https://doi.org/10.1002/adma.200902096

    Article  CAS  Google Scholar 

  20. Jamali A, Azhdari Tehrani A, Shemirani F, Morsali A (2016) Lanthanide metal–organic frameworks as selective microporous materials for adsorption of heavy metal ions. Dalton Trans 45:9193–9200. https://doi.org/10.1039/c6dt00782a

    Article  CAS  PubMed  Google Scholar 

  21. Ma SH, Shim Y, Islam SM, Subrahmanyam KS, Wang P, Li H, Wang S, Yang X, Kanatzidis MG (2014) Efficient hg vapor capture with polysulfide intercalated layered double hydroxides. Chem Mater 26:5004–5011. https://doi.org/10.1021/cm5020477

    Article  CAS  Google Scholar 

  22. Yee K, Reimer N, Liu J, Cheng SY, Yiu SM, Weber J, Stock N, Xu Z (2013) Effective mercury sorption by thiol-laced metal–organic frameworks: in strong acid and the vapor phase. J Am Chem Soc 135:7795–7798. https://doi.org/10.1021/ja400212k

    Article  CAS  PubMed  Google Scholar 

  23. Ke F, Qiu LG, Yuan YP, Peng FM, Jiang X, Xie AJ, Shen YH, Zhu JF (2011) Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J Hazard Mater 196:36–43. https://doi.org/10.1016/j.jhazmat.2011.08.069

    Article  CAS  PubMed  Google Scholar 

  24. Oh Y, Morris CD, Kanatzidis MG (2012) Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption. J Am Chem Soc 134:14604–14608. https://doi.org/10.1021/ja3061535

    Article  CAS  PubMed  Google Scholar 

  25. Hagen M, Schiffels P, Hammer M, Dorfler S, Tubke J, Hoffmann MJ, Althues H, Kaskel S (2013) In-situ Raman investigation of polysulfide formation in li-S cells. J Electrochem Soc 160:A1205–A1214. https://doi.org/10.1149/2.045308jes

    Article  CAS  Google Scholar 

  26. Abbasi AR, Akhbari K, Morsali A (2012) Dense coating of surface mounted CuBTC metal–organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason Sonochem 19:846–852. https://doi.org/10.1016/j.ultsonch.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  27. Liu Ch HY, Naismith N, Economy J (2003) Novel polymeric chelating fibers for selective removal of mercury and cesium from water. Environ Sci Technol 37:4261–4268. https://doi.org/10.1021/es0343104

    Article  CAS  Google Scholar 

  28. Yantasee W, Warner CL, Sangvanich T, Shane Addleman R, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41:5114–5119. https://doi.org/10.1021/es0705238

    Article  CAS  PubMed  Google Scholar 

  29. Manos MJ, Ding N, Kanatzidis MG (2008) Layered metal sulfides: exceptionally selective agents for radioactive strontium removal. Proc Natl Acad Sci 105:3696–3699. https://doi.org/10.1073/pnas.0711528105

    Article  PubMed  Google Scholar 

  30. Ali J, Wang H, Ifthikar J, Khan A, Wang T, Zhan K, Shahzadb A, Chen Z, Chen Z (2018) Efficient, stable and selective adsorption of heavy metals by thio-functionalized layered double hydroxide in diverse types of water. Chem Eng J 332:387–397. https://doi.org/10.1016/j.cej.2017.09.080

    Article  CAS  Google Scholar 

  31. Asiabi H, Yamini Y, Shamsayei M, Tahmasebi E (2017) Highly selective and efficient removal and extraction of heavy metals by layered double hydroxides intercalated with the diphenylamine-4-sulfonate: a comparative study. Chem Eng J 323:212–223. https://doi.org/10.1016/j.cej.2017.04.096

    Article  CAS  Google Scholar 

  32. Safari M, Yamini Y, Masoomi MY, Morsali A, Mani-Varnosfaderani A (2017) Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES. Microchim Acta 184:1555–1564. https://doi.org/10.1007/s00604-017-2133-3

    Article  CAS  Google Scholar 

  33. Taghizadeh M, Asgharinezhad AA, Samkhaniany N, Tadjarodi A, Abbaszadeh A, Pooladi M (2014) Solid phase extraction of heavy metal ions based on a novel functionalized magnetic multi-walled carbon nanotube composite with the aid of experimental design methodology. Microchim Acta 181:597–605. https://doi.org/10.1007/s00604-013-1010-y

    Article  CAS  Google Scholar 

  34. Ma L, Wang Q, Islam SM, Liu Y, Ma S, Kanatzidis MG (2016) Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS4 2−Ion. J Am Chem Soc 138:2858–2866. https://doi.org/10.1021/jacs.6b00110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Yamini.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1.06 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozohour Yazdi, M., Yamini, Y., Asiabi, H. et al. A metal organic framework prepared from benzene-1,3,5-tricarboxylic acid and copper(II), and functionalized with various polysulfides as a sorbent for selective sorption of trace amounts of heavy metal ions. Microchim Acta 185, 525 (2018). https://doi.org/10.1007/s00604-018-3059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3059-0

Keywords

Navigation