Skip to main content
Log in

Aerogels prepared from polymeric β-cyclodextrin and graphene aerogels as a novel host-guest system for immobilization of antibodies: a voltammetric immunosensor for the tumor marker CA 15–3

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A three-dimensional porous network graphene aerogel (GAs) with large specific area and excellent conductivity was loaded with β-cyclodextrin polymer (Pβ-CD) to serve as a support for immobilization of antibodies. A highly sensitive immunosensor for the cancer marker carbohydrate antigen 15–3 (CA15–3) was designed based on the use of Pβ-CD/GAs. The large specific area of GAs warrants high loading with antibodies, and their excellent electrical conductivity warrants strong electrical signals. Based on the synergistic effect of GAs and Pβ-CD, an immunoassay was designed that is making use of hexacyanoferrate as an electrochemical probe and having a pleasantly low working potential of 0.2 V (vs. SCE). Response is linear in the 0.1 mU mL−1 to 100 U mL−1 activity range, and the lower detection limit is 0.03 mU mL−1 (at S/N = 3). The immunoassay is stable, selective and reproducible. It was applied to the analysis of spiked samples, and results were satisfactory.

Schematic of an electrochemical immunoassay for the carbohydrate antigen 15–3. It is based on the use of β-cyclodextrin polymer and a graphene aerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Darwish IA, Wani TA, Khalil NY, Blake DA (2012) Novel automated flow-based immunosensor for real-time measurement of the breast cancer biomarker CA15-3 in serum. Talanta 97:499–504

    Article  CAS  Google Scholar 

  2. Khoshroo A, Mazloum-Ardakani M, Forat-Yazdi M (2018) Enhanced performance of label-free electrochemical immunosensor for carbohydrate antigen 15-3 based on catalytic activity of cobalt sulfide/graphene nanocomposite. Sensors Actuators B Chem 255:580–587

    Article  CAS  Google Scholar 

  3. Zhao Y, Zheng YQ, Zhao CY, You JM, Qu FL (2015) Hollow PDA-Au nanoparticles-enabled signal amplification for sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125. Biosens Bioelectron 71:200–206

    Article  CAS  Google Scholar 

  4. Jiang XY, Wang HQ, Yuan R, Chai YQ (2015) Sensitive electrochemiluminescence detection for CA15-3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods. Biosens Bioelectron 63:33–38

    Article  CAS  Google Scholar 

  5. Li YY, Xu CX, Li H, Wang H, Wu D, Ma HM, Cai YY, Du B, Wei Q (2014) Nonenzymatic immunosensor for detection of carbohydrate antigen 15-3 based on hierarchical nanoporous PtFe alloy. Biosens Bioelectron 56:295–299

    Article  CAS  Google Scholar 

  6. Li H, He J, Li S, Turner AP (2013) Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15–3. Biosens Bioelectron 43:25–29

    Article  Google Scholar 

  7. Zhao LF, Wei Q, Wu H, Dou JK, Li H (2014) Ionic liquid functionalized graphene based immunosensor for sensitive detection of carbohydrate antigen 15-3 integrated with Cd2+-functionalized nanoporous TiO2 as labels. Biosens Bioelectron 59:75–80

    Article  CAS  Google Scholar 

  8. Afsharan H, Khalilzadeh B, Tajalli H, Mollabashi M, Navaeipour F, Rashidi MR (2016) A sandwich type immunosensor for ultrasensitive electrochemical quantification of p53 protein based on gold nanoparticles/graphene oxide. Electrochim Acta 188:153–164

    Article  CAS  Google Scholar 

  9. Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A (2015) Label-free electrochemical immunosensor for detection of tumor necrosis factor α based on fullerene-functionalized carbon nanotubes/ionic liquid. J Electroanal Chem 757:58–64

    Article  CAS  Google Scholar 

  10. Pei HM, Zhu SY, Yang MH, Kong RM, Zheng YQ, Qu FL (2015) Graphene oxide quantum dots@ silver core-shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron 74:909–914

    Article  CAS  Google Scholar 

  11. Zhao Y, Zheng YQ, Kong RM, Xia L, Qu FL (2016) Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly (acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron 75:383–388

    Article  CAS  Google Scholar 

  12. Wang J, Yang DC, Chen MF, Liu BF, Chen H, Xu H, Wang WX, Bai LJ (2018) Electrochemical Immunosensor detection of tumor markers based on GO composite Nanoprobe for signal amplification. Anal Methods 10:526–532

    Article  CAS  Google Scholar 

  13. Chen Y, Li Y, Deng DM, He HB, Yan XX, Wang ZX, Fan CH, Luo LQ (2018) Effective immobilization of Au nanoparticles on TiO2 loaded graphene for a novel sandwich-type immunosenso. Biosens Bioelectron 102:301–306

    Article  CAS  Google Scholar 

  14. Li Y, He JL, Chen J, Niu YZ, Zhao YL, Zhang YC, Yu C (2018) A dual-type responsive electrochemical immunosensor for quantitative detection of PCSK9 based on n-C60-PdPt/N-GNRs and Pt-poly (methylene blue) nanocomposites. Biosens Bioelectron 102:301–306

    Article  Google Scholar 

  15. Han J, Zhang MF, Chen GJ, Zhang YQ, Wei Q, Zhuo Y, Xie G, Yuan R, Chen SQ (2017) Ferrocene covalently confined in porous MOF as signal tag for highly sensitive electrochemical immunoassay of amyloid-β. J Mater Chem B 5:8330–8336

    Article  CAS  Google Scholar 

  16. Huang KJ, Niu DJ, Xie WZ, Wang W (2010) A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes-chitosans nanocomposite film modified glassy carbon electrode. Anal Chim Acta 659:102–108

    Article  CAS  Google Scholar 

  17. Zhang XY, Shen GY, Sun SY, Shen YM, Zhang CX, Xiao AG (2014) Direct immobilization of antibodies on dialdehyde cellulose film for convenient construction of an electrochemical immunosensor. Sensors Actuators B Chem 200:304–309

    Article  CAS  Google Scholar 

  18. Chen S, Zhang JB, Gan N, Hu FT, Li TH, Cao YT, Pan DD (2015) An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchim Acta 182(3–4):815–822

    Article  CAS  Google Scholar 

  19. Ortiz M, Fragoso A, O'Sullivan CK (2011) Amperometric detection of antibodies in serum: performance of self-assembled cyclodextrin/cellulose polymer interfaces as antigen carriers. Org Biomol Chem 9(13):4770–4773

    Article  CAS  Google Scholar 

  20. Niu XH, Mo ZL, Yang X, Sun MY, Zhao P, Li ZL, Ouyang MX, Liu ZY, Gao HH, Guo RB, Liu NJ (2018) Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Microchim Acta 185(7):328

    Article  Google Scholar 

  21. Zhu GB, Yi YH, Chen JH (2016) Recent advances for cyclodextrin-based materials in electrochemical sensing. TrAC Trends Anal Chem 80:232–241

    Article  CAS  Google Scholar 

  22. Gao YS, Wu LP, Zhang KX, Xu JK, Lu LM, Zhu XF, Wu Y (2015) Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes. Chin Chem Lett 26:613–618

    Article  CAS  Google Scholar 

  23. Zhang Y, Yuan R, Chai YQ, Li WJ, Zhong X, Zhong HA (2011) Simultaneous voltammetric determination for DA, AA and NO2 based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform. Biosens Bioelectron 26:3977–3980

    Article  CAS  Google Scholar 

  24. Zhang X, Wu L, Zhou JW, Zhang XH, Chen JH (2015) A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode. J Electroanal Chem 742:97–103

    Article  CAS  Google Scholar 

  25. Li XY, Li JJ, Liu YQ, Zhang XH, Chen JH (2017) A sensitive electrochemical immunosensor for prion detection based on poly-β-cyclodextrin/gold nanoparticles/glassy carbon electrode. Sensors Actuators B Chem 250:1–7

    Article  CAS  Google Scholar 

  26. Li YH, Zhai XR, Wang HB, Liu XS, Guo L, Ji XL, Wang L, Qiu HY, Liu XY (2015) Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin). Microchim Acta 182:1877–1884

    Article  CAS  Google Scholar 

  27. Liu X, Sun JB, Zhang XT (2015) Novel 3D graphene aerogel-ZnO composites as efficient detection for NO2 at room temperature. Sensors Actuators B Chem 211:220–226

    Article  CAS  Google Scholar 

  28. Xiao L, Wu DQ, Han S, Huang YS, Li S, He M, Zhang FZ, Feng XL (2013) Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl Mater Interfaces 5:3764–3769

    Article  CAS  Google Scholar 

  29. Chen L, Wang X, Zhang X, Zhang H (2012) 3D porous and redox-active prussian blue-in-graphene aerogels for highly efficient electrochemical detection of H2O2. J Mater Chem 22:22090–22096

    Article  CAS  Google Scholar 

  30. Xie Y, Yu Y, Lu L, Ma X, Gong L, Huang X, Liu G, Yu Y (2018) CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection. J Electroanal Chem 812:82–89

    Article  CAS  Google Scholar 

  31. Xu YX, Sheng KX, Li C, Shi GQ (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330

    Article  CAS  Google Scholar 

  32. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nature Nanotech 3:101–105

    Article  CAS  Google Scholar 

  33. Zaidi SA (2017) Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide. Biosens Bioelectron 94:714–718

    Article  CAS  Google Scholar 

  34. Gao JJ, Liu MX, Song HO, Zhang SP, Qian YY, Li AM (2016) Highly-sensitive electrocatalytic determination for toxic phenols based on coupled cMWCNT/cyclodextrin edge-functionalized graphene composite. J Hazard Mater 318:99–108

    Article  CAS  Google Scholar 

  35. Jiang ZM, Li GY, Zhang MX (2016) Electrochemical sensor based on electro-polymerization of β-cyclodextrin and reduced-graphene oxide on glassy carbon electrode for determination of gatifloxacin. Sensors Actuators B Chem 228:59–65

    Article  CAS  Google Scholar 

  36. Qin Q, Bai X, Hua ZL (2016) Electropolymerization of a conductive β-cyclodextrin polymer on reduced graphene oxide modified screen-printed electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. J Electroanal Chem 782:50–58

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, Hoboken

    Google Scholar 

  38. Zhou Y, Yang YJ, Deng X, Zhang GM, Zhang Y, Zhang CH, Shuang SM, He YJ, Sun W (2018) Electrochemical sensor for determination of ractopamine based on aptamer/octadecanethiol Janus particles. Sensors Actuators B Chem 276:204–210

    Article  CAS  Google Scholar 

  39. Jiang LP, Han J, Li FY, Gao J, Li YY, Dong YH, Wei Q (2015) A sandwich-type electrochemical immunosensor based on multiple signal amplification for α-fetoprotein labeled by platinum hybrid multiwalled carbon nanotubes adhered copper oxide. Electrochim Acta 160:7–14

    Article  CAS  Google Scholar 

  40. Nguyen V-A, Nguyen HL, Nguyen DT, Do QP, Tran LD (2017) Electrosynthesized poly(1,5-diaminonaphthalene)/polypyrrole nanowires bilayer as an immunosensor platform for breast cancer biomarker CA 15–3. Curr Appl Phys 17:1422–1429

    Article  Google Scholar 

  41. Gomes RS, Moreira FT, Fernandes R, Sales MGF (2018) Sensing CA 15–3 in point-of-care by electropolymerizing O-phenylenediamine (oPDA) on Au-screen printed electrodes. PLoS ONE 13(5):e0196656

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (21665010, 31741103, 51572117 and 51302117), the outstanding youth fund and 5511 Project of Jiangxi Province (20162BCB23027 and 20165BCB18016), Jiangxi Provincial, Department of Education (GJJ12595), Natural Science Foundation of Jiangxi Province (20171BAB203015) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingkun Xu or Limin Lu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1.21 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Tian, Q., Xu, J. et al. Aerogels prepared from polymeric β-cyclodextrin and graphene aerogels as a novel host-guest system for immobilization of antibodies: a voltammetric immunosensor for the tumor marker CA 15–3. Microchim Acta 185, 517 (2018). https://doi.org/10.1007/s00604-018-3056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3056-3

Keywords

Navigation