Skip to main content

Advertisement

Log in

Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method is presented for electrochemical determination of the breast cancer biomarker HER2. A glassy carbon electrode (GCE) was modified with densely packed gold nanoparticles placed on a composite consisting of electrochemically reduced graphene oxide and single walled carbon nanotubes (ErGO-SWCNTs). An aptamer directed against HER2 was then immobilized ono the GCE. The modified GCE was characterized by cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. The immobilized aptamer selectively recognizes HER2 on the electrode interface, and this leads to an increased charge transfer resistance (Rct) of the electrode when using ferri/ferro-cyanide as the electrochemical probe. The method has a low limit of detection (50 fg·mL−1) and a wide analytical range (0.1 pg·mL−1 to 1 ng·mL−1). The assay is highly reproducible and specific. Clinical application was demonstrated by analysis of the HER2 levels in serum samples, and sera of breast cancer patients were successfully discriminated from sera of healthy persons.

An electrochemical aptasensor for HER2 is described that is based on the immobilization of anti-HER2 aptamer on a glassy carbon electrode modified with a nanocomposite prepred fromreduced graphene oxide, carbon nanotubes and gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hurvitz S, McCann K (2019) HER2-positive breast cancer. Elsevier, St. Louis

    Google Scholar 

  2. Hung M-C, Matin A, Zhang Y, Xing X, Sorgi F, Huang L, Yu D (1995) HER-2/neu-targeting gene therapy-a review. Gene 159:65–71

    Article  CAS  Google Scholar 

  3. Perez EA, Cortés J, Gonzalez-Angulo AM, Bartlett JMS (2014) HER2 testing: current status and future directions. Cancer Treat Rev 40:276–284

    Article  CAS  Google Scholar 

  4. Xu B, Shen J, Guo W, Zhao W, Zhuang Y, Wang L (2019) Impact of the 2018 ASCO/CAP HER2 guidelines update for HER2 testing by FISH in breast cancer. Pathol Res Pract 215:251–255

    Article  CAS  Google Scholar 

  5. Hirschmann A, Lamb TA, Marchal G, Padilla M, Diebold J (2012) Simultaneous analysis of HER2 gene and protein on a single slide facilitates HER2 testing of breast and gastric carcinomas. Am J Clin Pathol 138:837–844

    Article  CAS  Google Scholar 

  6. Lim S-J, Cantillep A, Carpenter PM (2013) Validation and workflow optimization of human epidermal growth factor receptor 2 testing using INFORM HER2 dual-color in situ hybridization. Hum Pathol 44:2590–2596

    Article  CAS  Google Scholar 

  7. Ding J, Zhou Y, Li JJ, Jiang LP, He ZW, Zhu JJ (2015) Screening of HER2 overexpressed breast cancer subtype in vivo by the validation of high-performance long-term, and noninvasive fluorescence tracer. Anal Chem 87:12290–12297

    Article  CAS  Google Scholar 

  8. Kao KJ, Tai CH, Chang WH, Yeh TS, Chen TC, Lee GB (2015) A fluorescence in situ hybridization (FISH) microfluidic platform for detection of HER2 amplification in cancer cells. Biosens Bioelectron 69:272–279

    Article  CAS  Google Scholar 

  9. Zhang M, Gao G, Ding Y, Deng C, Xiang J, Wu H (2019) A fluorescent aptasensor for the femtomolar detection of epidermal growth factor receptor-2 based on the proximity of G-rich sequences to Ag nanoclusters. Talanta 199:238–243

    Article  CAS  Google Scholar 

  10. Shen C, Zeng K, Luo J, Li X, Yang M, Rasooly A (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89:10264–10269

    Article  CAS  Google Scholar 

  11. Qureshi A, Gurbuz Y, Niazi JH (2015) Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sensors Actuators B 220:1145–1151

    Article  CAS  Google Scholar 

  12. Shen C, Liu S, Li X, Zhao D, Yang M (2018) Immunoelectrochemical detection of the human epidermal growth factor receptor 2 (HER2) via gold nanoparticle-based rolling circle amplification. Microchim Acta 185:547–553

    Article  Google Scholar 

  13. Chai Y, Li X, Yang M (2019) Aptamer based determination of the cancer biomarker HER2 by using phosphate-functionalized MnO2 nanosheets as the electrochemical probe. Microchim Acta 186:316–322

    Article  Google Scholar 

  14. Marques RCB, Viswanathan S, Nouws HPA, Delerue-Matos C, González-García MB (2014) Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. Talanta 129:594–599

    Article  CAS  Google Scholar 

  15. Bahadır EB, Sezgintürk MK (2015) Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 132:162–174

    Article  Google Scholar 

  16. Pacheco JG, Rebelo P, Freitas M, Nouws HPA, Delerue-Matos C (2018) Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sensors Actuators B 273:1008–1014

    Article  CAS  Google Scholar 

  17. Sharma S, Zapatero-Rodríguez J, Saxena R, O’Kennedy R, Srivastava S (2018) Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron 106:78–85

    Article  CAS  Google Scholar 

  18. Marques RCB, Costa-Rama E, Viswanathan S, Nouws HPA, Costa-García A, Delerue-Matos C, González-García MB (2018) Voltammetric immunosensor for the simultaneous analysis of the breast cancer biomarkers CA 15-3 and HER2-ECD. Sensors Actuators B 255:918–925

    Article  CAS  Google Scholar 

  19. Heydari-Bafrooei E, Askari S (2017) Ultrasensitive aptasensing of lysozyme by exploiting the synergistic effect of gold nanoparticle-modified reduced graphene oxide and MWCNTs in a chitosan matrix. Microchim Acta 184:3405–3413

    Article  CAS  Google Scholar 

  20. Ensafi AA, Jamei HR, Heydari-Bafrooei E, Rezaei B (2016) Electrochemical study of quinone redox cycling: a novel application of DNA-based biosensors for monitoring biochemical reactions. Bioelectrochemistry 111:15–22

    Article  CAS  Google Scholar 

  21. Yang S, You M, Zhang F, Wang Q, He P (2018) A sensitive electrochemical aptasensing platform based on exonuclease recycling amplification and host-guest recognition for detection of breast cancer biomarker HER2. Sensors Actuators B 258:796–802

    Article  CAS  Google Scholar 

  22. Yang Y, Yang X, Yang Y, Yuan Q (2018) Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon 129:380–395

    Article  CAS  Google Scholar 

  23. Gupta S, Murthy CN, Prabha CR (2018) Recent advances in carbon nanotube based electrochemical biosensors. Int J Biol Macromol 108:687–703

    Article  CAS  Google Scholar 

  24. Arkan E, Saber R, Karimi Z, Shamsipur M (2015) A novel antibody–antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode. Anal Chim Acta 874:66–74

    Article  CAS  Google Scholar 

  25. Tabasi A, Noorbakhsh A, Sharifi E (2017) Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens Bioelectron 95:117–123

    Article  CAS  Google Scholar 

  26. Yan H, Tang X, Zhu X, Zeng Y, Lua X, Yin Z, Lu Y, Yang Y, Li L (2018) Sandwich-type electrochemical immunosensor for highly sensitive determination of cardiac troponin I using carboxyl-terminated ionic liquid and helical carbon nanotube composite as platform and ferrocenecarboxylic acid as signal label. Sensors Actuators B 277:234–240

    Article  CAS  Google Scholar 

  27. Scheller FW, Zhang X, Yarman A, Wollenberger U, Gyurcsányi RE (2019) Molecularly imprinted polymer-based electrochemical sensors for biopolymers. Curr Opin Electrochem 14:53–59

    Article  CAS  Google Scholar 

  28. Labib M, Green B, Mohamadi RM, Mepham A, Ahmed SU, Mahmoudian L, Chang I-H, Sargent EH, Kelley SO (2016) Aptamer- and antisense-mediated two-dimensional isolation of specific cancer cell subpopulations. J Am Chem Soc 1388:2476–2479

    Article  Google Scholar 

  29. Zhang Z, Chen HH, Xing CY, Guo MY, Xu FG, Wang XD, Gruber HJ, Zhang BL, Tang JL (2011) Sodium citrate: a universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles. Nano Res 4:599–611

    Article  CAS  Google Scholar 

  30. Sharma H, Kaushik V, Avasthi DK, Shukla AK, Vankar VD (2012) Au-nanoparticles-decorated MWCNTs demonstrating enhanced fluorescence and Raman spectroscopy. AIP Conf Proc 1451:58–60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by the Research Council of Vali-e-Asr University of Rafsanjan (VRU), Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Heydari-Bafrooei.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 5311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostamabadi, P.F., Heydari-Bafrooei, E. Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Microchim Acta 186, 495 (2019). https://doi.org/10.1007/s00604-019-3619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3619-y

Keywords

Navigation