Skip to main content

Advertisement

Log in

Ratiometric determination of copper(II) using dually emitting Mn(II)-doped ZnS quantum dots as a fluorescent probe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A ratiometric probe is described for the fluorometric determination of Cu(II) ions based on their quenching effect on the luminescence of dually-emitting quantum dots (QDs). ZnS QDs were doped with Mn(II) and subsequently modified with mercaptopropionic acid to give the QD probe which consists of a  sole fluorophore but has two emission peaks (at 430 and 590 nm under 310 nm excitation, respectively). On addition of Cu(II) ions, the 590 nm band is quenched while the 430 nm band exhibits a little change. The changes in the intensity ratios of the yellow and the purple bands increases linearly in the 0 to 3.0 μM Cu(II) concentration range, and the detection limit reached 14 nM. The QD probe was validated and successfully applied to the determination of Cu(II) in spiked real water samples.

Mn-doped ZnS (ZnS:Mn(II)) quantum dots were synthesized with yellow fluorescence. After the modification of 3-mercaptopropionic acid (MPA), ZnS:Mn(II) was transferred to aqueous phase and became MPA modified Mn-doped ZnS (MPA- ZnS:Mn(II)). The fluorescence was changed to purple upon the addition of copper ions because the yellow band was largely quenched while the purple band only changed a little.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peers G, Price NM (2006) Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341–344

    Article  CAS  Google Scholar 

  2. Fisher AE, Naughton DP (2005) Therapeutic chelators for the twenty first century: new treatments for iron and copper mediated inflammatory and neurological disorders. Curr Drug Deliv 2:261–268

    Article  CAS  Google Scholar 

  3. Ghaedi M, Ahmadi F, Shokrollahi A (2007) Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater 142:272–278

    Article  CAS  Google Scholar 

  4. Larner F, Rehkämper M, Coles BJ, Kreissig K, Weiss DJ, Sampson B, Unsworth C, Strekopytov S (2011) A new separation procedure for cu prior to stable isotope analysis by MC-ICP-MS. J Anal At Spectrom 26:1627–1632

    Article  CAS  Google Scholar 

  5. Afkhami A, Soltani-Felehgari F, Madrakian T, Ghaedi H, Rezaeivala M (2013) Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples. Anal Chim Acta 771:21–30

    Article  CAS  Google Scholar 

  6. Lin M, Hu XK, Ma ZH, Chen LX (2012) Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions. Anal Chim Acta 746:63–69

    Article  CAS  Google Scholar 

  7. Han CP, Wang R, Wang KY, Xu HT, Sui MR, Li JG, Xu K (2016) Highly fluorescent carbon dots as selective and sensitive “on-off-on” probes for iron (III) ion and apoferritin detection and imaging in living cells. Biosens Bioelectron 83:229–236

    Article  CAS  Google Scholar 

  8. Zheng XL, Ji RX, Cao XQ, Ge YQ (2017) FRET-based ratiometric fluorescent probe for Cu2+ with a new indolizine fluorophore. Anal Chim Acta 978:48–54

    Article  CAS  Google Scholar 

  9. Zhu AW, Qu Q, Shao XL, Kong B, Tian Y (2012) Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem Int Ed 51:7185–7189

    Article  CAS  Google Scholar 

  10. Lu X, Zhang J, Xie YN, Zhang X, Jiang X, Hou X, Wu P (2018) Ratiometric phosphorescent probe for thallium in serum, water, and soil samples based on long-lived, spectrally resolved, Mn-doped ZnSe quantum dots and carbon dots. Anal Chem 90:2939–2945

    Article  CAS  Google Scholar 

  11. Liu Y, Mettry M, Gill AD, Perez L, Zhong WW (2017) Hooley RJ, selective heavy element sensing with a simple host-guest fluorescent array. Anal Chem 89:11113–11121

    Article  CAS  Google Scholar 

  12. Li LN, Shen SS, Lin RY, Bai Y, Liu HW (2017) Rapid and specific luminescence sensing of cu (II) ions with a porphyrinic metal-organic framework. Chem Commun 53:9986–9989

    Article  CAS  Google Scholar 

  13. Liu S, Tian JQ, Wang L, Zhang YW, Qin XY, Luo YL, Asiri AM, AO AY, Sun XP (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of cu(II) ions. Adv Mater 24:2037–2041

    Article  CAS  Google Scholar 

  14. Lu WJ, Gao YF, Jiao Y, Shuang SM, Li CZ, Dong C (2017) Carbon nano-dots as a fluorescent and colorimetric dual-readout probe for the detection of arginine and Cu2+ and its logic gate operation. Nanoscale 9:11545–11552

    Article  CAS  Google Scholar 

  15. Su HZ, Chen XB, Fang WH (2014) ON-OFF mechanism of a fluorescent sensor for the detection of Zn(II), cd(II), and cu(II) transition metal ions. Anal Chem 86:891–899

    Article  CAS  Google Scholar 

  16. Koneswaran M, Narayanaswamy R (2009) L-cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors Actuators B Chem 139:104–109

    Article  CAS  Google Scholar 

  17. Shahmuradyan A, Krull UJ (2016) Intrinsically labeled fluorescent oligonucleotide probes on quantum dots for transduction of nucleic acid hybridization. Anal Chem 88:3186–3193

    Article  CAS  Google Scholar 

  18. Doughan S, Uddayasankar U, Krull UJ (2015) A paper-based resonance energy transfer nucleic acid hybridization assay using upconversion nanoparticles as donors and quantum dots as acceptors. Anal Chim Acta 878:1–8

    Article  CAS  Google Scholar 

  19. Algar WR, Krull UJ (2009) Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 81:4113–4120

    Article  CAS  Google Scholar 

  20. Wang HG, Sun L, Li YP, Fei XL, Sun MD, Zhang CQ, Li YX, Yang QB (2011) Layer-by-layer assembled Fe3O4@C@CdTe core/shell microspheres as separable luminescent probe for sensitive sensing of Cu2+ ions. Langmuir 27:11609–11615

    Article  CAS  Google Scholar 

  21. Chen YF, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138

    Article  CAS  Google Scholar 

  22. Liang GX, Liu HY, Zhang JR, Zhu JJ (2010) Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots. Talanta 80:2172–2176

    Article  CAS  Google Scholar 

  23. Jin LH, Han CS (2014) Ultrasensitive and selective fluorimetric detection of copper ions using thiosulfate-involved quantum dots. Anal Chem 86:7209–7213

    Article  CAS  Google Scholar 

  24. Lin LP, Song XH, Chen YY, Rong MC, Wang YR, Zhao L, Zhao TT, Chen X (2015) Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu2+ and L-cysteine. Anal Chim Acta 891:261–268

    Article  CAS  Google Scholar 

  25. Wang FX, Gu ZY, Lei W, Wang WJ, Xia XF, Hao QL (2014) Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions. Sensors Actuators B Chem 190:516–522

    Article  CAS  Google Scholar 

  26. Sung TW, Lo YL (2012) Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection. Sensors Actuators B Chem 165:119–125

    Article  CAS  Google Scholar 

  27. Dong BH, Cao LX, Su G, Liu W, Qu H, Jiang DX (2009) Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions. J Colloid Interface Sci 339:78–82

    Article  CAS  Google Scholar 

  28. Qin JJ, Dong BH, Gao RJ, Su G, Han JW, Li X, Liu W, Wang W, Cao LX (2017) Water-soluble silica-coated ZnS: Mn nanoparticlesas fluorescent sensors for the detection of ultratrace copper(II) ions in seawater. Anal Methods 9:322–328

    Article  CAS  Google Scholar 

  29. He LW, Dong BL, Liu Y, Lin WY (2016) Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem Soc Rev 45:6449–6461

    Article  CAS  Google Scholar 

  30. Wu P, Hou XD, Xu JJ, Chen HY (2016) Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale 8:8427–8442

    Article  CAS  Google Scholar 

  31. Sun XY, Liu PC, Wu LL, Liu B (2015) Graphene-quantum-dots-based ratiometric fluorescent probe for visual detection of copper ion. Analyst 140:6742–6747

    Article  CAS  Google Scholar 

  32. Ma YJ, Xu GH, Wei FD, Cen Y, Ma YS, Song YY, Xu XM, Shi ML, Muhammad S, Hu Q (2017) A dual-emissive fluorescent sensor fabricated by encapsulating quantum dots and carbon dots into metal-organic frameworks for the ratiometric detection of Cu2+ in tap water. J Mater Chem C 5:8566–8571

    Article  CAS  Google Scholar 

  33. Li HM, Wang XF, Cai Z, Lu L, Tao J, Sun B, Yang YY, Xu Q, Yu ZQ, Zhao P (2017) Ratiometric fluorescent sensing of copper ion based on chromaticity change strategy. Anal Bioanal Chem 409:6655–6662

    Article  CAS  Google Scholar 

  34. Zhu HJ, Xu HD, Yu H, Zhang K, Hayat T, Alsaedi A, Wang SH (2017) Immobilization of quantum dots on fluorescent graphene oxide for ratiometric fluorescence detection of copper ions. ChemistrySelect 2:5536–5541

    Article  CAS  Google Scholar 

  35. Hoppe K, Geidel E, Weller H, Eychmüller A (2002) Covalently bound CdTe nanocrystals. Phys Chem Chem Phys 4:1704–1706

    Article  CAS  Google Scholar 

  36. Sooklal K, Cullum BS, Angel SM, Murphy CJ (1996) Photophysical properties of ZnS nanoclusters with spatially localized Mn2+. J Phys Chem 100:4551–4555

    Article  CAS  Google Scholar 

  37. Lu LL, Yang G, Xia YS (2014) From pair to single: sole fluorophore for ratiometric sensing by dual-emitting quantum dots. Anal Chem 86:6188–6191

    Article  CAS  Google Scholar 

  38. Yao JL, Zhang K, Zhu HJ, Ma F, Sun MT, Yu H, Sun J, Wang SH (2013) Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions. Anal Chem 85:6461–6468

    Article  CAS  Google Scholar 

  39. Huo JZ, Liu K, Zhao XJ, Zhang XX, Wang Y (2014) Simple and sensitive colorimetric sensors for the selective detection of Cu2+ in aqueous buffer. Spectrochim Acta A 117:789–792

    Article  CAS  Google Scholar 

  40. Es’haghi Z, Azmoodeh R (2010) Hollow fiber supported liquid membrane microextraction of Cu2+ followed by flame atomic absorption spectroscopy determination. Arab J Chem 3:21–26

    Article  Google Scholar 

  41. Ibrhim I, Hong NL, Abou-Zied OK, Huang NM, Estrela P, Pandikumar A (2016) Cadmium sulfide nanoparticles decorated with au quantum dots as ultrasensitive photoelectrochemical sensor for selective detection of copper(II) ions. J Phys Chem C 120:22202–22214

    Article  Google Scholar 

  42. Zhao GH, Li XJ, Zhao YB, Li YY, Cao W, Wei Q (2017) Electrochemiluminescence assay of Cu2+ by using one-step electrodeposition synthesized CdS/ZnS quantum dots. Analyst 142:3272–3277

    Article  CAS  Google Scholar 

  43. Xu H, Huang DD, Wu Y, Di JW (2016) Photoelectrochemical determination of Cu2+ ions based on assembly of au/ZnS nanoparticles. Sensors Actuators B Chem 235:432–438

    Article  CAS  Google Scholar 

  44. Kong LC, Chu XF, Ling X, Ma GY, Yao YY, Meng YH, Liu WW (2016) Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper(II) and temperature in human cells and bacterial cells. Microchim Acta 183:2185–2195

    Article  CAS  Google Scholar 

  45. Chen XG, Lu QJ, Liu D, Wu CY, Liu ML, Li HT, Zhang YY, Yao SZ (2018) Highly sensitive and selective determination of copper(II) based on a dual catalytic effect and by using silicon nanoparticles as a fluorescent probe. Microchim Acta 185:188

    Article  Google Scholar 

  46. Zheng XD, Pan JM, Gao L, Wei X, Dai JD, Shi WD, Yan YS (2015) Silica nanoparticles doped with a europium(III) complex and coated with an ion imprinted polymer for rapid determination of copper(II). Microchim Acta 182:753–761

    Article  CAS  Google Scholar 

  47. Chao MR, Hu CW, Chen JL (2016) Fluorometric determination of copper(II) using CdTe quantum dots coated with 1-(2-thiazolylazo)-2-naphthol and an ionic liquid. Microchim Acta 183:1323–1332

    Article  CAS  Google Scholar 

  48. Wang JR, Yu JL, Wang XY, Wang LY, Li BW, Shen DZ, Kang Q, Chen LX (2018) Functional ZnS:Mn(II) quantum dot modified with L-cysteine and 6-mercaptonicotinic acid as a fluorometric probe for copper(II). Microchim Acta 185:420

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61603001, 21776002, 21675158, 81773684, 21505053), Guangdong Natural Science Funds for Distinguished Young Scholars (2018B030306033), Pearl River S&T Nova Program of Guangzhou (201806010060), Science and Technology Planning Project of Guangdong Province, China (2016A030310089), Medical Scientific Research Foundation of Guangdong Province of China (A2018133), the Fundamental Research Funds for the Central Universities (21618407), and the Basic Research Project of Knowledge Innovation Program of Shenzhen City (JCYJ20160229165250876).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Zhang, Ping Cui or Haibo Zhou.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Bao, Z., Zhang, K. et al. Ratiometric determination of copper(II) using dually emitting Mn(II)-doped ZnS quantum dots as a fluorescent probe. Microchim Acta 185, 511 (2018). https://doi.org/10.1007/s00604-018-3043-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3043-8

Keywords

Navigation