Skip to main content
Log in

Magnetic nanoparticles modified with organic dendrimers containing methyl methacrylate and ethylene diamine for the microextraction of rosuvastatin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles (MNPs) modified with organic dendrimers are shown to be a viable sorbent of the microextraction of the drug rosuvastatin (RST; also known as Crestor). The MNPs were prepared from iron(II) chloride and iron(III) chloride and then coated with silicon dioxide. The coated MNPs produced by this method have diameters ranging from 10 to 60 nm according to scanning electron microscopy. The MNPs were further modified with organic dendrimers containing methyl methacrylate and ethylene diamine. The resulting MNPs were characterized by SEM, Fourier transform infra-red and thermal gravimetry analysis. Then, the efficacy of the modified MNPs with respect to the extraction of RST was studied. The adsorption of RST by MNPs can be best described by a Langmuir isotherm. Following elution with buffer, RST was quantified by HPLC. The method was applied to the determination of RST in (spiked) human blood plasma, urine, and in tablets. RST extraction efficiencies are 54.5% in plasma, 86.6% from the drug matrix, and 94.3% in urine. The highest adsorption capacity of the RST by the MNPs adsorbent was 61 mg⋅g−1.

Co-precipitation was used to synthesize magnetic nanoparticles (MNPs). They were coated with a layer of SiO2 and then branched by organic dendrimers containing methyl methacrylate (MMA) and ethylene diamine (EDA). Rosuvastatin (RST) drug was trapped between dendrimer branches, therefore adsorption capacity of the drug was strongly increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Brown WV, Bays HE, Hassman DR, McKenney J, Chitra R, Hutchinson H, Miller E, Rosuvastatin Study Group (2002) Efficacy and safety of rosuvastatin compared with pravastatin and simvastatin in patients with hypercholesterolemia: a randomized, double-blind, 52-week trial. Am Heart J 144(6):1036–1043

    Article  CAS  PubMed  Google Scholar 

  2. Olsson AG, McTaggart F, Raza A (2002) Rosuvastatin: a highly effective new HMG-CoA reductase inhibitor. Cardiovasc Drug Rev 20(4):303–328

    Article  CAS  PubMed  Google Scholar 

  3. Jones PH, Davidson MH, Stein EA, Bays HE, McKenney J, Miller E, Cain VA, Blasetto JW, STELLAR Study Group (2003) Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR trial). Am J Cardiol 92(2):152–160

    Article  CAS  PubMed  Google Scholar 

  4. Martin PD, Mitchell PD, Schneck DW (2002) Pharmacodynamic effects and pharmacokinetics of a new HMG-CoA reductase inhibitor, rosuvastatin, after morning or evening administration in healthy volunteers. Br J Clin Pharmacol 54(5):472–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chowdhury R, Khan H, Heydon E, Shroufi A, Fahimi S, Moore C, Stricker B, Mendis S, Hofman A, Mant J, Franco OH (2013) Adherence to cardiovascular therapy: a meta-analysis of prevalence and clinical consequences. Eur Heart J 34(38):2940–2948

    Article  CAS  PubMed  Google Scholar 

  6. Cohen JD, Brinton EA, Ito MK, Jacobson TA (2012) Understanding statin use in America and gaps in patient education (USAGE): an internet-based survey of 10,138 current and former statin users. J Clin Lipidol 6(3):208–215

    Article  PubMed  Google Scholar 

  7. Bruckert E, Hayem G, Dejager S, Yau C, Bégaud B (2005) Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—the PRIMO study. Cardiovasc Drugs Ther 19(6):403–414

    Article  CAS  PubMed  Google Scholar 

  8. Martin PD, Dane AL, Nwose OM, Schneck DW, Warwick MJ (2002) No effect of age or gender on the pharmacokinetics of Rosuvastatin: a new HMG-CoA Reductase inhibitor. J Clin Pharmacol 42(10):1116–1121

    Article  CAS  PubMed  Google Scholar 

  9. Kim J-E, Shin J-Y, Cho M-H (2012) Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 86(5):685–700

    Article  CAS  PubMed  Google Scholar 

  10. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Article  CAS  PubMed  Google Scholar 

  11. Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boas U, Christensen JB, Heegaard PM (2006) Dendrimers in medicine and biotechnology: new molecular tools. Royal Society of Chemistry, London

  13. Singh U, Dar MM, Hashmi AA (2014) Dendrimers: synthetic strategies, properties and applications. Orient J Chem 30(3):911–922

    Article  CAS  Google Scholar 

  14. Tomalia DA, Reyna L, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Portland Press Limited, Biochemical Society Transactions 35(1):61–67. https://doi.org/10.1042/BST0350061https://doi.org/10.1042/BST0350061

  15. LIU L, BARTH RF, ADAMS DM, SOLOWAY AH, REISFELD RA (1995) Bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors. J Hematother 4(5):477–483

    Article  CAS  PubMed  Google Scholar 

  16. Morgan MT, Nakanishi Y, Kroll DJ, Griset AP, Carnahan MA, Wathier M, Oberlies NH, Manikumar G, Wani MC, Grinstaff MW (2006) Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 66(24):11913–11921

    Article  CAS  PubMed  Google Scholar 

  17. Singh R, Nalwa HS (2011) Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J Biomed Nanotechnol 7(4):489–503

    Article  CAS  PubMed  Google Scholar 

  18. Abolghasemi MM, Habibiyan R, Jaymand M, Piryaei M (2018) A star-shaped polythiophene dendrimer coating for solid-phase microextraction of triazole agrochemicals. Microchim Acta 185(3):179

    Article  CAS  Google Scholar 

  19. Lotfi Z, Mousavi HZ, Sajjadi SM (2017) A hyperbranched polyamidoamine dendrimer grafted onto magnetized graphene oxide as a sorbent for the extraction of synthetic dyes from foodstuff. Microchim Acta 184(11):4503–4512

    Article  CAS  Google Scholar 

  20. Panahi HA et al (2013) Synthesis and characterization of poly [1-(N, N-bis-carboxymethyl) amino-3-allylglycerol-co-dimethylacrylamide] grafted to magnetic nano-particles for extraction and determination of letrozole in biological and pharmaceutical samples. Talanta 117:511–517

    Article  CAS  Google Scholar 

  21. Ai H (2011) Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliv Rev 63(9):772–788

    Article  CAS  PubMed  Google Scholar 

  22. Kumar CS, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang W, Yan Z, Gao J, Tong P, Liu W, Zhang L (2015) Metal–organic framework UiO-66 modified magnetite@ silica core–shell magnetic microspheres for magnetic solid-phase extraction of domoic acid from shellfish samples. J Chromatogr A 1400:10–18

    Article  CAS  PubMed  Google Scholar 

  24. Muzzy JD, Kays AO (1984) Thermoplastic vs. thermosetting structural composites. Polym Compos 5(3):169–172

    Article  CAS  Google Scholar 

  25. Ivanov AE, Eccles J, Panahi HA, Kumar A, Kuzimenkova MV, Nilsson L, Bergenståhl B, Long N, Phillips GJ, Mikhalovsky SV, Galaev IY, Mattiasson B (2009) Boronate-containing polymer brushes: characterization, interaction with saccharides and mammalian cancer cells. J Biomed Mater Res A 88(1):213–225

    Article  CAS  PubMed  Google Scholar 

  26. Mahdavian AR, Mirrahimi MA-S (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159(1):264–271

    Article  CAS  Google Scholar 

  27. Khosroshahi ME, Ghazanfari L (2012) Synthesis and functionalization of SiO 2 coated Fe 3 O 4 nanoparticles with amine groups based on self-assembly. Mater Sci Eng C 32(5):1043–1049

    Article  CAS  Google Scholar 

  28. Andrade A et al (2009) Synthesis and characterization of magnetic nanoparticles coated with silica through a sol-gel approach. Cerâmica 55(336):420–424

    Article  CAS  Google Scholar 

  29. Abbas M et al (2014) Fe3O4/SiO2 core/shell nanocubes: novel coating approach with tunable silica thickness and enhancement in stability and biocompatibility. J Nanomed Nanotechnol 5(6):1–8

    Article  CAS  Google Scholar 

  30. Cao H, He J, Deng L, Gao X (2009) Fabrication of cyclodextrin-functionalized superparamagnetic Fe 3 O 4/amino-silane core–shell nanoparticles via layer-by-layer method. Appl Surf Sci 255(18):7974–7980

    Article  CAS  Google Scholar 

  31. Liu Y (2006) Some consideration on the Langmuir isotherm equation. Colloids Surf A Physicochem Eng Asp 274(1):34–36

    Article  CAS  Google Scholar 

  32. Wang L, Zhang J, Wang A (2008) Removal of methylene blue from aqueous solution using chitosan-g-poly (acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids Surf A Physicochem Eng Asp 322(1):47–53

    Article  CAS  Google Scholar 

  33. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interf Sci 209:172–184

    Article  CAS  Google Scholar 

  34. Everett D (1972) Manual of symbols and terminology for physicochemical quantities and units, appendix II: definitions, terminology and symbols in colloid and surface chemistry. Pure Appl Chem 31(4):577–638

    Article  Google Scholar 

  35. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5(2):212–223

    Article  CAS  Google Scholar 

  36. Freundlich H (1907) Über die adsorption in lösungen. Z Phys Chem 57(1):385–470

    CAS  Google Scholar 

  37. Tempkin M, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochim USSR 12(1):327

    Google Scholar 

  38. Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63(6):1024–1024

    Article  CAS  Google Scholar 

  39. Gao J, Zhong D, Duan X, Chen X (2007) Liquid chromatography/negative ion electrospray tandem mass spectrometry method for the quantification of rosuvastatin in human plasma: application to a pharmacokinetic study. J Chromatogr B 856(1–2):35–40

    Article  CAS  Google Scholar 

  40. Shah Y, Iqbal Z, Ahmad L, Khan A, Khan MI, Nazir S, Nasir F (2011) Simultaneous determination of rosuvastatin and atorvastatin in human serum using RP-HPLC/UV detection: method development, validation and optimization of various experimental parameters. J Chromatogr B 879(9–10):557–563

    Article  CAS  Google Scholar 

  41. Narapusetti A, Bethanabhatla SS, Sockalingam A, Repaka N, Saritha V (2015) Simultaneous determination of rosuvastatin and amlodipine in human plasma using tandem mass spectrometry: application to disposition kinetics. J Adv Res 6(6):931–940

    Article  CAS  PubMed  Google Scholar 

  42. Caglar S, Toker S (2012) Determination of rosuvastatin at picogram level in serum by fluorimetric derivatization with 9-anthryldiazomethane using HPLC. J Chromatogr Sci 51(1):53–58

    Article  CAS  PubMed  Google Scholar 

  43. Patel H, Rathod R, Dash RP, Nivsarkar M (2014) Simultaneous quantification of rosuvastatin and fenofibric acid by HPLC-UV in rat plasma and its application to pharmacokinetic study. J Liq Chromatogr Relat Technol 37(12):1673–1684

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homayon Ahmad Panahi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzapour, H., Panahi, H.A., Moniri, E. et al. Magnetic nanoparticles modified with organic dendrimers containing methyl methacrylate and ethylene diamine for the microextraction of rosuvastatin. Microchim Acta 185, 440 (2018). https://doi.org/10.1007/s00604-018-2956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2956-6

Keywords

Navigation