Skip to main content
Log in

Preparation of strongly fluorescent water-soluble dithiothreitol modified gold nanoclusters coated with carboxychitosan, and their application to fluorometric determination of the immunosuppressive 6-mercaptopurine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Water-soluble and non-aggregating gold nanoclusters (AuNCs) were obtained by modification of the AuNCs with dithiothreitol (DTT) and then coating them with carboxylated chitosan. This process remarkably enhances the dispersibility of DTT-coated AuNCs in water. The resulting AuNCs, on photoexcitation at 285 nm, display strong red emission with a maximum at 650 nm and a 23% quantum yield. Fluorescence is strongly and selectively suppressed in the presence of 6-mercaptopurine (6-MP). Photoluminescence drops linearly in the 0.1–100 μM 6-MP concentration range, and the detection limit of this assay is 0.1 μM. Other features of the modified AuNCs include a decay time of 8.56 μs, a 365 nm Stokes shift, good colloidal stability, ease of chemical modification, and low toxicity. Conceivably, these NCs may find a range of applications in biological imaging and optical sensing.

Highly fluorescent and water-soluble gold nanoclusters (AuNCs) were obtained by modification of the AuNCs with dithiothreitol (DTT) and then coating them with carboxylated chitosan (CC). The resulting CC/DTT-AuNCs were used for sensitive and selective detection of 6-mercaptopurine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sahasranaman S, Howard D, Roy S (2008) Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 64(8):753–767

    Article  CAS  PubMed  Google Scholar 

  2. Lennard L (1999) Therapeutic drug monitoring of antimetabolic cytotoxic drugs. Br J Clin Pharmacol 47(2):131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Erdmann GR, France LA, Bostrom BC, Canafax DM (1990) A reversed phase high performance liquid chromatography approach in determining total red blood cell concentrations of 6-thioguanine, 6-mercaptopurine, methylthioguanine, and methylmercaptopurine in a patient receiving thiopurine therapy. Biomed Chromatogr 4(2):47–51

    Article  CAS  PubMed  Google Scholar 

  4. Hawwa AF, Millership JS, Collier PS, McElnay JC (2009) Development and validation of an HPLC method for the rapid and simultaneous determination of 6-mercaptopurine and four of its metabolites in plasma and red blood cells. J Pharm Biomed Anal 49(2):401–409

    Article  CAS  PubMed  Google Scholar 

  5. Rudy J, Argyle J, Winick N, Van Dreal P (1988) HPLC analysis of 6-mercaptopurine and metabolites in extracellular body fluids. Ann Clin Biochem 25(5):504–509

    Article  CAS  PubMed  Google Scholar 

  6. O'Shea TJ, Lunte SM (1993) Selective detection of free thiols by capillary electrophoresis-electrochemistry using a gold/mercury amalgam microelectrode. Anal Chem 65(3):247–250

    Article  CAS  Google Scholar 

  7. Rosenfeld J, Taguchi V, Hillcoat B, Kawai M (1977) Determination of 6-mercaptopurine in plasma by mass spectrometry. Anal Chem 49(6):725–727

    Article  CAS  PubMed  Google Scholar 

  8. Yang P, Chen Y, Zhu Q, Wang F, Wang L, Li Y (2008) Sensitive chemiluminescence method for the determination of glutathione, L-cysteine and 6-mercaptopurine. Microchim Acta 163(3–4):263–269

    Article  CAS  Google Scholar 

  9. Sun H, Wang T, Liu X, Chen P (2013) A sensitive inhibition chemiluminescence method for the determination of 6-mercaptopurine in tablet and biological fluid using the reaction of luminol-ag (III) complex in alkaline medium. J Lumin 134:154–159

    Article  CAS  Google Scholar 

  10. Biparva P, Abedirad SM, Kazemi SY (2015) Silver nanoparticles enhanced a novel TCPO-H2O2-safranin O chemiluminescence system for determination of 6-mercaptopurine. Spectrochim Acta A 145:454–460

    Article  CAS  Google Scholar 

  11. Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola MLT, Gupta VK, Ensafi AA (2015) A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind Eng Chem Res 54(14):3634–3639

    Article  CAS  Google Scholar 

  12. Shahrokhian S, Ghorbani-Bidkorbeh F, Mohammadi A, Dinarvand R (2012) Electrochemical determinations of 6-mercaptopurine on the surface of a carbon nanotube-paste electrode modified with a cobalt salophen complex. J Solid State Electrochem 16(4):1643–1650

    Article  CAS  Google Scholar 

  13. Keyvanfard M, Khosravi V, Karimi-Maleh H, Alizad K, Rezaei B (2013) Voltammetric determination of 6-mercaptopurine using a multiwall carbon nanotubes paste electrode in the presence of isoprenaline as a mediator. J Mol Liq 177:182–189

    Article  CAS  Google Scholar 

  14. Lu BY, Li H, Deng H, Xu Z, Li WS, Chen HY (2008) Voltammetric determination of 6-mercaptopurine using [co(phen)3]3+/MWNT modified graphite electrode. J Electroanal Chem 621(1):97–102

    Article  CAS  Google Scholar 

  15. Gao MX, Xu JL, Li YF, Huang CZ (2013) A rapid and sensitive spectrofluorometric method for 6-mercaptopurine using CdTe quantum dots. Anal Methods 5(3):673–677

    Article  CAS  Google Scholar 

  16. Chen Z, Zhang G, Chen X, Chen J, Liu J, Yuan H (2013) A fluorescence switch sensor for 6-mercaptopurine detection based on gold nanoparticles stabilized by biomacromolecule. Biosens Bioelectron 41:844–847

    Article  CAS  PubMed  Google Scholar 

  17. Shen XC, Jiang LF, Liang H, Lu X, Zhang LJ, Liu XY (2006) Determination of 6-mercaptopurine based on the fluorescence enhancement of au nanoparticles. Talanta 69(2):456–462

    Article  CAS  PubMed  Google Scholar 

  18. Bi N, Hu M, Xu J, Jia L (2017) Colorimetric determination of mercury(II) based on the inhibition of the aggregation of gold nanorods coated with 6-mercaptopurine. Microchim Acta 184(10):3961–3967

    Article  CAS  Google Scholar 

  19. Yao Q, Yuan X, Fung V, Yu Y, Leong DT, Jiang D, Xie J (2017) Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat Commun 8(1):927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yao Q, Fung V, Sun C, Huang S, Chen T, Jiang DE, Lee JY, Xie J (2018) Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach. Nat Commun 9(1):1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deng HH, Zhang LN, He SB, Liu AL, Li GW, Lin XH, Xia XH, Chen W (2015) Methionine-directed fabrication of gold nanoclusters with yellow fluorescent emission for Cu2+ sensing. Biosens Bioelectron 65:397–403

    Article  CAS  PubMed  Google Scholar 

  22. Deng HH, Wu GW, Zou ZQ, Peng HP, Liu AL, Lin XH, Xia XH, Chen W (2015) pH-sensitive gold nanoclusters: preparation and analytical applications for urea, urease, and urease inhibitor detection. Chem Commun 51(37):7847–7850

    Article  CAS  Google Scholar 

  23. Shang L, Dörlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011) Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 3(5):2009–2014

    Article  CAS  PubMed  Google Scholar 

  24. Deng HH, Shi XQ, Wang FF, Peng HP, Liu AL, Xia XH, Chen W (2017) Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host-guest recognition. Chem Mater 29(3):1362–1369

    Article  CAS  Google Scholar 

  25. Deng HH, Wang FF, Shi XQ, Peng HP, Liu AL, Xia XH, Chen W (2016) Water-soluble gold nanoclusters prepared by protein-ligand interaction as fluorescent probe for real-time assay of pyrophosphatase activity. Biosens Bioelectron 83:1–8

    Article  CAS  PubMed  Google Scholar 

  26. Shen J, Jin B, Qi YC, Jiang QY, Gao XF (2017) Carboxylated chitosan/silver-hydroxyapatite hybrid microspheres with improved antibacterial activity and cytocompatibility. Mater Sci Eng C 78:589–597

    Article  CAS  Google Scholar 

  27. Ding H, Liang C, Sun K, Wang H, Hiltunen JK, Chen Z, Shen J (2014) Dithiothreitol-capped fluorescent gold nanoclusters: an efficient probe for detection of copper (II) ions in aqueous solution. Biosens Bioelectron 59:216–220

    Article  CAS  PubMed  Google Scholar 

  28. Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10(7):2568–2573

    Article  CAS  PubMed  Google Scholar 

  29. Yuan X, Luo Z, Yu Y, Yao Q, Xie J (2013) Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem.-Asian J 8(5):858–871

    Article  CAS  PubMed  Google Scholar 

  30. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury (II). Angew Chem 119(36):6948–6952

    Article  Google Scholar 

  31. Shang L, Azadfar N, Stockmar F, Send W, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011) One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 7(18):2614–2620

    Article  CAS  PubMed  Google Scholar 

  32. Jin M, Mou ZL, Zhang RL, Liang SS, Zhang ZQ (2017) An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine. Biosens Bioelectron 91:162–168

    Article  CAS  PubMed  Google Scholar 

  33. Sun Z, Liu Y, Li Y (2015) Selective recognition of 6-mercaptopurine based on luminescent metal-organic frameworks Fe-MIL-88NH 2. Spectrochim Acta A 139:296–301

    Article  CAS  Google Scholar 

  34. Zakrzewski R, Borowczyk K, Łuczak A, Młynarski W, Trelińska J (2013) Determination of urinary 6-mercaptopurine and three of its metabolites by HPLC-UV coupled with the iodine-azide reaction. Bioanalysis 5(8):869–877

    Article  CAS  PubMed  Google Scholar 

  35. Ensafi AA, Karimi-Maleh H (2012) Determination of 6-mercaptopurine in the presence of uric acid using modified multiwall carbon nanotubes-TiO2 as a voltammetric sensor. Drug Test Anal 4(12):970–977

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (21675024, 21405126), the Program for Innovative Leading Talents in Fujian Province (2016B016), Joint Funds for the Innovation of Science and Technology, Fujian Province (2016Y9056), and the Natural Science Foundation of Fujian Province (2017 J01575, 2017 J01225).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Ping Peng, Yin-Huan Liu or Wei Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, HH., Huang, KY., Zhuang, QQ. et al. Preparation of strongly fluorescent water-soluble dithiothreitol modified gold nanoclusters coated with carboxychitosan, and their application to fluorometric determination of the immunosuppressive 6-mercaptopurine. Microchim Acta 185, 400 (2018). https://doi.org/10.1007/s00604-018-2933-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2933-0

Keywords

Navigation