Skip to main content
Log in

Signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric ATP assay is described that makes use of carbon dots and graphene oxide along with toehold-mediated strand displacement reaction. In the absence of target, the fluorescence of carbon dots (with excitation/emission maxima at 360/447 nm) is strong and in the “on” state, because the signal probe hybridizes with the aptamer strand and cannot combine with graphene oxide. In the presence of ATP, it will bind to the aptamer and induce a strand displacement reaction. Consequently, the signal probe is released, the sensing strategy will change into the “off” state with the addition of graphene oxide. This aptasensor exhibits selective and sensitive response to ATP and has a 3.3 nM detection limit.

Schematic of signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP. This strategy exhibits high sensitivity and selectivity with a detection limit as low as 3.3 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu M, Gao Z, Zhou Q, Lin Y, Lu M, Tang D (2016) Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5′-triphosphate with unmodified gold nanoparticles. Biosens Bioelectron 86:978–984. https://doi.org/10.1016/j.bios.2016.07.105

    Article  CAS  PubMed  Google Scholar 

  2. Kato M, Shiode N, Teragawa H, Hirao H, Yamada T (1999) Adenosine 5′-triphosphate induced dilation of human coronary microvessels in vivo. Intern Med 38:324–329. https://doi.org/10.2169/internalmedicine.38.324

    Article  CAS  PubMed  Google Scholar 

  3. Shinozaki Y, Koizumi S, Ishida S, Sawada J, Ohno Y, Inoue K (2005) Cytoprotection against oxidative stress-induced damage of astrocytes by extracellular ATP via P2Y1 receptors. Glia 49(2):288–300. https://doi.org/10.1002/glia.20118

    Article  PubMed  Google Scholar 

  4. Zhao Q, Zhang Z, Tang Y (2017) A new conjugated polymer-based combination probe for ATP detection using a multisite-binding and FRET strategy. Chem Commun 53:9414–9417. https://doi.org/10.1039/c7cc04293k

    Article  CAS  Google Scholar 

  5. Hai X, Li N, Wang K, Zhang Z, Zhang J, Dang F (2018) A fluorescence aptasensor based on two-dimensional sheet metal-organic frameworks for monitoring adenosine triphosphate. Anal Chim Acta 998:60–66. https://doi.org/10.1016/j.aca.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  6. Jiang G, Zhu W, Shen X, Xu L, Li X, Wang R, Liu C, Zhou X (2017) Colorimetric and visual determination of adenosine triphosphate using a boronic acid as the recognition element, and based on the deaggregation of gold nanoparticles. Microchim Acta 184(11):4305–4312. https://doi.org/10.1007/s00604-017-2454-2

    Article  CAS  Google Scholar 

  7. Mao Y, Fan T, Gysbers R, Tan Y, Liu F (2017) A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles. Talanta 168:279–285. https://doi.org/10.1016/j.talanta.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  8. Branchini BR, Southworth TL, Fontaine DM, Kohrt D, Talukder M, Michelini E, Cevenini L, Roda A, Grossel MJ (2015) An enhanced chimeric firefly luciferase-inspired enzyme for ATP detection and bioluminescence reporter and imaging applications. Anal Biochem 484:148–153. https://doi.org/10.1016/j.ab.2015.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shi F, Li Y, Lin Z, Ma D, Su X (2015) A novel fluorescent probe for adenosine 5′-triphosphate detection based on Zn2+−modulated l-cysteine capped CdTe quantum dots. Sensors Actuators B Chem 220:433–440. https://doi.org/10.1016/j.snb.2015.05.087

    Article  CAS  Google Scholar 

  10. Shen X, Xu L, Zhu W, Li B, Hong J, Zhou X (2017) A turn-on fluorescence aptasensor based on carbon dots for sensitive detection of adenosine. New J Chem 41(17):9230–9235. https://doi.org/10.1039/C7NJ02384G

    Article  CAS  Google Scholar 

  11. Zhu W, Shen X, Zhu C, Li B, Hong J, Zhou X (2018) Turn-on fluorescent assay based on purification system via magnetic separation for highly sensitive probing of adenosine. Sensors Actuators B Chem 259:855–861. https://doi.org/10.1016/j.snb.2017.12.147

    Article  CAS  Google Scholar 

  12. Wang X, Shen X, Li B, Jiang G, Zhou X, Jiang H (2016) One-step facile synthesis of novel β-amino alcohol functionalized carbon dots for the fabrication of a selective copper ion sensing interface based on the biuret reaction. RSC Adv 6(22):18326–18332. https://doi.org/10.1039/C5RA24348C

    Article  CAS  Google Scholar 

  13. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542. https://doi.org/10.1007/s00604-015-1705-3

    Article  CAS  Google Scholar 

  14. Dhenadhayalan N, Lin KC (2015) Chemically induced fluorescence switching of carbon-dots and its multiple logic gate implementation. Sci Rep 5:10012–10021. https://doi.org/10.1038/srep10012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song Q, Peng M, Wang L, He D, Ouyang J (2016) A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core-shell Ag@SiO2 nanoparticles. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2015.09.008

  16. Duan W, Wang X, Wang H, Li F (2018) Fluorescent and colorimetric dual-mode aptasensor for thrombin detection based on target-induced conjunction of split aptamer fragments. Talanta 180:76–80. https://doi.org/10.1016/j.talanta.2017.12.033

    Article  CAS  PubMed  Google Scholar 

  17. Sun C, Sun R, Chen Y, Tong Y, Zhu J, Bai H, Zhang S, Zheng H, Ye H (2018) Utilization of aptamer-functionalized magnetic beads for highly accurate fluorescent detection of mercury (II) in environment and food. Sensors Actuators B Chem 255:775–780. https://doi.org/10.1016/j.snb.2017.08.004

    Article  CAS  Google Scholar 

  18. Liu Y, Liu C, Liu Y (2011) Investigation on fluorescence quenching of dyes by graphite oxide and graphene. Appl Surf Sci 257(13):5513–5518. https://doi.org/10.1016/j.apsusc.2010.12.136

    Article  CAS  Google Scholar 

  19. Cheng X, Cen Y, Xu G, Wei F, Shi M, Xu X, Sohail M, Hu Q (2018) Aptamer based fluorometric determination of ATP by exploiting the FRET between carbon dots and graphene oxide. Microchim Acta 185(2). https://doi.org/10.1007/s00604-018-2683-z

  20. Ning Y, Wei K, Cheng L, Hu J, Xiang Q (2017) Fluorometric aptamer based determination of adenosine triphosphate based on deoxyribonuclease I-aided target recycling and signal amplification using graphene oxide as a quencher. Microchim Acta 184(6):1847–1854. https://doi.org/10.1007/s00604-017-2194-3

    Article  CAS  Google Scholar 

  21. Zhu W, Zhao Z, Li Z, Li H, Jiang J, Shen G, Yu R (2013) A label free exonuclease III-aided fluorescence assay for adenosine triphosphate based on graphene oxide and ligation reaction. New J Chem 37(4):927. https://doi.org/10.1039/c2nj41055a

    Article  CAS  Google Scholar 

  22. Wen C, Huang Y, Tian J, Hu K, Pan L, Zhao S (2015) A novel exonuclease III-aided amplification assay based on a graphene platform for sensitive detection of adenosine triphosphate. Anal Methods-Uk 7(9):3708–3713. https://doi.org/10.1039/C5AY00354G

    Article  CAS  Google Scholar 

  23. Hong F, Chen X, Cao Y, Dong Y, Wu D, Hu F, Gan N (2018) Enzyme- and label-free electrochemical aptasensor for kanamycin detection based on double stir bar-assisted toehold-mediated strand displacement reaction for dual-signal amplification. Biosens Bioelectron 112:202–208. https://doi.org/10.1016/j.bios.2018.04.017

    Article  CAS  PubMed  Google Scholar 

  24. Chen J, Shang B, Zhang H, Zhu Z, Chen L, Wang H, Ran F, Chen Q, Chen J (2018) Enzyme-free ultrasensitive fluorescence detection of epithelial cell adhesion molecules based on a toehold-aided DNA recycling amplification strategy. RSC Adv 8(27):14798–14805. https://doi.org/10.1039/C8RA01362D

    Article  CAS  Google Scholar 

  25. Lv Y, Cui L, Peng R, Zhao Z, Qiu L, Chen H, Jin C, Zhang X, Tan W (2015) Entropy beacon: a hairpin-free DNA amplification strategy for efficient detection of nucleic acids. Anal Chem 87(23):11714–11720. https://doi.org/10.1021/acs.analchem.5b02654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131(47):17303–17314. https://doi.org/10.1021/ja906987s

    Article  CAS  PubMed  Google Scholar 

  27. He J, Zhang H, Zou J, Liu Y, Zhuang J, Xiao Y, Lei B (2016) Carbon dots-based fluorescent probe for "off-on" sensing of hg(II) and I−. Biosens Bioelectron 79:531–535. https://doi.org/10.1016/j.bios.2015.12.084

    Article  CAS  PubMed  Google Scholar 

  28. H JWS, E OR (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  Google Scholar 

  29. Cui X, Wang Y, Liu J, Yang Q, Zhang B, Gao Y, Wang Y, Lu G (2017) Dual functional N- and S-co-doped carbon dots as the sensor for temperature and Fe3+ ions. Sensors Actuators B Chem 242:1272–1280. https://doi.org/10.1016/j.snb.2016.09.032

    Article  CAS  Google Scholar 

  30. Wu ZL, Gao MX, Wang TT, Wan XY, Zheng LL (2014) A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale 6:3868–3874. https://doi.org/10.1039/c3nr06353d

    Article  CAS  PubMed  Google Scholar 

  31. Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W (2012) Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 48(64):7955. https://doi.org/10.1039/c2cc33869f

    Article  CAS  Google Scholar 

  32. Wang P, Cheng Z, Chen Q, Qu L, Miao X, Feng Q (2018) Construction of a paper-based electrochemical biosensing platform for rapid and accurate detection of adenosine triphosphate (ATP). Sensors Actuators B Chem 256:931–937. https://doi.org/10.1016/j.snb.2017.10.024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81773681, 81572081, 81273480, and 21175070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemin Zhou.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Shen, X., Li, B. et al. Signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP. Microchim Acta 185, 392 (2018). https://doi.org/10.1007/s00604-018-2931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2931-2

Keywords

Navigation