Skip to main content
Log in

Teicoplanin-functionalized magnetic beads for detection of Staphylococcus aureus via inhibition of the luminol chemiluminescence by intracellular catalase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An affinity-based protocol is described for the detection of Staphylococcus aureus (S. aureus). It is utilizing teicoplanin-functionalized magnetic beads as carriers. Teicoplanin, which binds to the walls of cells of S. aureus via five hydrogen bonds, acts as the recognition agent. Captured S. aureus is magnetically separated from the sample matrix and then specifically lysed by lysostaphin which cleaves the cross-linking pentaglycine bridges of peptidoglycan in the cell wall. Lastly, S. aureus is quantified via the inhibitory effect of released intracellular catalase on a chemiluminescent (CL) system composed of peroxidase, luminol, H2O2 and p-iodophenol because catalase decomposes H2O2. S. aureus can be detected with CL response in the 140 to 1.4 × 107 CFU·mL−1 concentration range and a detection limit as low as 47 CFU·mL−1 at a signal-to-noise ratio of 3. The method was evaluated by analyzing spiked samples including milk, human urine and saline injection solutions. The reliability was demonstrated by a recovery test and by comparison with a conventional plate counting method.

An antibiotic-affinity protocol is developed to detect Staphylococcus aureus (S. aureus) by utilizing teicoplanin-functionalized magnetic beads (Teic-MBs) as carriers. S. aureus can be quantified by measuring the inhibition of luminol chemiluminescence (CL) signal by intracellular catalase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, Dopfer D, Fazil A, Fischer-Walker CL, Hald T, Hall AJ, Keddy KH, Lake RJ, Lanata CF, Torgerson PR, Havelaar AH, Angulo FJ (2015) World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med 12(12):e1001921. https://doi.org/10.1371/journal.pmed.1001921

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532. https://doi.org/10.1056/nejm199808203390806

    Article  CAS  PubMed  Google Scholar 

  3. Law JWF, Ab Mutalib NS, Chan KG, Lee LH (2014) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5(770):1–19. https://doi.org/10.3389/fmicb.2014.00770

    Article  Google Scholar 

  4. Zhao X, Lin CW, Wang J, Oh DH (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24(3):297–312. https://doi.org/10.4014/jmb.1310.10013

    Article  CAS  PubMed  Google Scholar 

  5. Dou M, Sanjay ST, Dominguez DC, Liu P, Xu F, Li X (2017) Multiplexed instrument-free meningitis diagnosis on a polymer/paper hybrid microfluidic biochip. Biosens Bioelectron 87:865–873. https://doi.org/10.1016/j.bios.2016.09.033

    Article  CAS  PubMed  Google Scholar 

  6. Ma K, Deng Y, Bai Y, Xu DX, Chen EN, Wu HJ, Li BM, Gao LJ (2014) Rapid and simultaneous detection of Salmonella, Shigella, and Staphylococcus aureus in fresh pork using a multiplex real-time PCR assay based on immunomagnetic separation. Food Control 42:87–93. https://doi.org/10.1016/j.foodcont.2014.01.042

    Article  CAS  Google Scholar 

  7. Park SH, Aydin M, Khatiwara A, Dolan MC, Gilmore DF, Bouldin JL, Ahn S, Ricke SC (2014) Current and emerging technologies for rapid detection and characterization of Salmonella in poultry and poultry products. Food Microbiol 38:250–262. https://doi.org/10.1016/j.fm.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  8. Sung YJ, Suk HJ, Sung HY, Li T, Poo H, Kim MG (2013) Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Biosens Bioelectron 43:432–439. https://doi.org/10.1016/j.bios.2012.12.052

    Article  CAS  PubMed  Google Scholar 

  9. Tan F, Leung PHM, Z-b L, Zhang Y, Xiao L, Ye W, Zhang X, Yi L, Yang M (2011) A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sens Actuators B Chem 159(1):328–335. https://doi.org/10.1016/j.snb.2011.06.074

    Article  CAS  Google Scholar 

  10. Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens Bioelectron 68:149–155. https://doi.org/10.1016/j.bios.2014.12.040

    Article  CAS  PubMed  Google Scholar 

  11. Duan N, Wu SJ, Zhu CQ, Ma XY, Wang ZP, Yu Y, Jiang Y (2012) Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Anal Chim Acta 723:1–6. https://doi.org/10.1016/j.aca.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  12. Akram AR, Avlonitis N, Lilienkampf A, Perez-Lopez AM, McDonald N, Chankeshwara SV, Scholefield E, Haslett C, Bradley M, Dhaliwal K (2015) A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue. Chem Sci 6(12):6971–6979. https://doi.org/10.1039/c5sc00960j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu XB, Marrakchi M, Xu DW, Dong H, Andreescu S (2016) Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria. Biosens Bioelectron 80:9–16. https://doi.org/10.1016/j.bios.2016.01.041

    Article  CAS  PubMed  Google Scholar 

  14. Liu P, Han L, Wang F, Petrenko VA, Liu AH (2016) Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus. Biosens Bioelectron 82:195–203. https://doi.org/10.1016/j.bios.2016.03.075

    Article  CAS  PubMed  Google Scholar 

  15. Rees JC, Pierce CL, Schieltz DM, Barr JR (2015) Simultaneous identification and susceptibility determination to multiple antibiotics of Staphylococcus aureus by bacteriophage amplification detection combined with mass spectrometry. Anal Chem 87(13):6769–6777. https://doi.org/10.1021/acs.analchem.5b00959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams DH (1996) The glycopeptide story - how to kill the deadly 'superbugs. Nat Prod Rep 13(6):469–477. https://doi.org/10.1039/NP9961300469

    Article  CAS  PubMed  Google Scholar 

  17. Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8(11):943–950. https://doi.org/10.1007/bf01967563

    Article  CAS  PubMed  Google Scholar 

  18. Browder HP, Zygmunt WA, Young JR, Tavormin PA (1965) Lysostaphin - enzymatic mode of action. Biochem Biophys Res Commun 19(3):383–389. https://doi.org/10.1016/0006-291x(65)90473-0

    Article  CAS  PubMed  Google Scholar 

  19. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61(2):192–208. https://doi.org/10.1007/s00018-003-3206-5

    Article  CAS  PubMed  Google Scholar 

  20. Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF (2003) Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother 47(11):3407–3414. https://doi.org/10.1128/aac.47.11.3407-3414.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (21475107) and the Fundamental Research Funds for the Central Universities (XDJK2017A008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Fu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 74.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, M., Ouyang, H. et al. Teicoplanin-functionalized magnetic beads for detection of Staphylococcus aureus via inhibition of the luminol chemiluminescence by intracellular catalase. Microchim Acta 185, 391 (2018). https://doi.org/10.1007/s00604-018-2921-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2921-4

Keywords

Navigation