Skip to main content
Log in

Selective capture and sensitive fluorometric determination of Pseudomonas aeruginosa by using aptamer modified magnetic nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A fluorometric assay is described for the detection of the food pathogen Pseudomonas aeruginosa (P. aeruginosa). It is based on the hybridization of aptamer and fluorescein-labeled complementary DNA (FAM-cDNA) in combination with magnetic separation. In the absence of P. aeruginosa, FAM-cDNA is assembled on the surface of aptamer modified magnetic particles (MNPs) via hybridization between aptamer and cDNA. Upon addition of P. aeruginosa, FAM-cDNA is replaced by the bacteria and released from the MNPs since the aptamer preferentially binds to bacteria. After magnetic separation, the amount of bacteria can be quantified by determination of the fluorescence intensity (λexc/em = 494/525 nm) of the supernatant containing the released FAM-cDNA. This kind of assay allows for both selective enrichment and sensitive fluorometric determination of bacteria in a single step. The assay has a response to the logarithm of P. aeruginosa concentration that is linear in the range between 10 and 108 cfu·mL−1, with a detection limit as low as 1 cfu·mL−1. The detection process can be finished within <1.5 h. The feasibility of the assay was verified by detecting P. aeruginosa in spiked food samples.

Hybridization of aptamer and carboxyfluorescein labeled complementary DNA is combined with magnetic separation for detection of as low as 1 cfu·mL−1 Pseudomonas aeruginosa. This kind of assay allows for both selective enrichment and sensitive fluorometric determination of bacteria in a single step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shi H, Trinh Q, Xu W, Zhai B, Luo Y, Huang K (2012) A universal primer multiplex PCR method for typing of toxicogenic Pseudomonas aeruginosa. Appl Microbiol Biotechnol 95:1579–1587

    Article  CAS  PubMed  Google Scholar 

  2. Aghamollaei H, Moghaddam MM, Kooshki H, Heiat M, Mirnejad R, Barzi NS (2015) Detection of Pseudomonas aeruginosa by a triplex polymerase chain reaction assay based on lasI/R and gyrB genes. J Infect Public Health 8:314–322

    Article  PubMed  Google Scholar 

  3. Krithiga N, Viswanath KB, Vasantha VS, Jayachitra A (2016) Specific and selective electrochemical immunoassay for Pseudomonas aeruginosa based on pectin-gold nano composite. Biosens Bioelectron 79:121–129

    Article  CAS  PubMed  Google Scholar 

  4. Kim LH, Yu HW, Kim YH, Kim IS, Jang A (2013) Potential of fluorophore labeled aptamers for Pseudomonas aeruginosa detection in drinking water. J Korean Soc Appl Biol Chem 56:165–171

    Article  CAS  Google Scholar 

  5. Yu S, Yu F, Li Y, Liu L, Zhang H, Qu L, Wu Y (2016) Magnetic nanoparticles replacing microplate as immobile phase could greatly improve the sensitivity of chemiluminescence enzymatic immunoassay for deoxynivalenol. Food Control 60:500–504

    Article  CAS  Google Scholar 

  6. Hendrickson OD, Chertovich JO, Zherdev AV, Sveshnikov PG, Dzantiev BB (2018) Ultrasensitive magnetic ELISA of zearalenone with pre-concentration and chemiluminescent detection. Food Control 84:330–338

    Article  CAS  Google Scholar 

  7. Wang Y, Deng M, Jia L (2014) N-methylimidazolium functionalized magnetic particles as adsorbents for rapid and efficient capture of bacteria. Microchim Acta 181:1275–1283

    Article  CAS  Google Scholar 

  8. Chen J, Lin Y, Wang Y, Jia L (2015) Cationic polyelectrolyte functionalized magnetic particles assisted highly sensitive pathogens detection in combination with polymerase chain reaction and capillary electrophoresis. J Chromatogr B 991:59–67

    Article  CAS  Google Scholar 

  9. Tang Y, Zou J, Ma C, Ali Z, Li Z, Li X, Ma N, Mou X, Deng Y, Zhang L, Li K, Lu G, Yang H, He N (2013) Highly sensitive and rapid detection of Pseudomonas aeruginosa based on magnetic enrichment and magnetic separation. Theranostics 3:85–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jia F, Xu L, Yan W, Wu W, Yu Q, Tian X, Dai R, Li X (2017) A magnetic relaxation switch aptasensor for the rapid detection of Pseudomonas aeruginosa using superparamagnetic nanoparticles. Microchim Acta 184:1539–1545

    Article  CAS  Google Scholar 

  11. Wu S, Wang Y, Duan N, Ma H, Wang Z (2015) Colorimetric aptasensor based on enzyme for the detection of Vibrio parahemolyticus. J Agric Food Chem 63:7849–7854

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Wu X, Wang C, Shao N, Dong P, Xiao R, Wang S (2015) Magnetically assisted surface-enhanced Raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Appl Mater Interfaces 7:20919–20929

    Article  CAS  PubMed  Google Scholar 

  13. Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, Yuan J (2012) Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Anal Chim Acta 723:1–6

    Article  CAS  PubMed  Google Scholar 

  14. Emrani AS, Taghdisi SM, Danesh NM, Jalalian SH, Ramezani M, Abnous K (2015) A novel fluorescent aptasensor for selective and sensitive detection of digoxin based on silica nanoparticles. Anal Methods 7:3814–3818

    Article  CAS  Google Scholar 

  15. Chen L, Wen F, Li M, Guo X, Li S, Zheng N, Wang J (2017) A simple aptamer-based fluorescent assay for the detection of aflatoxin B1 in infant rice cereal. Food Chem 215:377–382

    Article  CAS  PubMed  Google Scholar 

  16. Li CH, Xiao X, Tao J, Wang DM, Huang CZ, Zhen SJ (2017) A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element. Biosens Bioelectron 91:149–154

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Wang S, Zhang Y, Pang G, Guo S (2017) Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin a sensor. Anal Chem 89:1704–1709

    Article  CAS  PubMed  Google Scholar 

  18. Jin B, Wang S, Lin M, Jin Y, Zhang S, Cui X, Gong Y, Li A, Xu F, Lu TJ (2017) Upconversion nanoparticles based FRET aptasensor for rapid and ultrasensitive bacteria detection. Biosens Bioelectron 90:525–533

    Article  CAS  PubMed  Google Scholar 

  19. Wang KY, Zeng YL, Yang XY, Li WB, Lan XP (2011) Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 30:273–278

    Article  PubMed  Google Scholar 

  20. Xuan S, Wang YXJ, Yu JC, Leung KCF (2009) Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem Mater 21:5079–5087

    Article  CAS  Google Scholar 

  21. Peleg AY, Tilahun Y, Fiandaca MJ, D’Agata EMC, Venkataraman L, Moellering RC, Eliopoulos GM (2009) Utility of peptide nucleic acid fluorescence in situ hybridization for rapid detection of Acinetobacter spp. and Pseudomonas aeruginosa. J Clin Microbiol 47:830–832

    Article  CAS  PubMed  Google Scholar 

  22. Wan Y, Zheng L, Sun Y, Zhang D (2014) Multifunctional semiconducting polymer dots for imaging, detection, and photo-killing of bacteria. J Mater Chem B 2:4818–4825

    Article  CAS  Google Scholar 

  23. Kaur G, Raj T, Kaur N, Singh N (2015) Pyrimidine-based functional fluorescent organic nanoparticle probe for detection of Pseudomonas aeruginosa. Org Biomol Chem 13:4673–4679

    Article  CAS  PubMed  Google Scholar 

  24. Ellairaja S, Krithiga N, Ponmariappan S, Vasantha VS (2017) Novel pyrimidine tagged silver nanoparticle based fluorescent immunoassay for the detection of Pseudomonas aeruginosa. J Agric Food Chem 65:1802–1812

    Article  CAS  PubMed  Google Scholar 

  25. Chen Z, Sun M, Luo F, Xu K, Lin Z, Zhang L (2018) Stimulus-response click chemistry based aptamer-functionalized mesoporous silica nanoparticles for fluorescence detection of thrombin. Talanta 178:563–568

    Article  CAS  PubMed  Google Scholar 

  26. Lu S, Wang S, Chen C, Sun J, Yang X (2018) Enzyme-free aptamer/AuNPs-based fluorometric and colorimetric dual-mode detection for ATP. Sensors Actuators B Chem 265:67–74

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the financial support of the National Natural Science Foundation of China (21675056) and the Scientific and Technological Planning Project of Guangzhou City (201805010002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jia.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Gao, X., Gao, R. et al. Selective capture and sensitive fluorometric determination of Pseudomonas aeruginosa by using aptamer modified magnetic nanoparticles. Microchim Acta 185, 377 (2018). https://doi.org/10.1007/s00604-018-2914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2914-3

Keywords

Navigation