Skip to main content
Log in

Tunable composites prepared from graphene oxide and zeolitic imidazolate framework-8 for improved selective isolation of hemoglobin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on the preparation of composites made from graphene oxide (GO) and zeolitic imidazolate framework-8 (ZIF-GO), with various fractions of GO. GO acts as the template and as a modulator for the surface properties of the composites. It also improves the selective adsorption of specific proteins, i.e. hemoglobin (Hb) in this case. The adsorption capacity for Hb is as high as 436 mg g−1 when using a composite containing 20% of GO as sorbent, and 95% of specific activity is maintained for the Hb recovered. The sorbent is applied to selectively isolate Hb from human whole blood.

Graphene oxide-zeolitic imidazolate framework-8 composites (ZIF-GO) with varying mass ratios of GO were prepared in order to tune surface properties and to improve the adsorption selectivity toward hemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O'Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67

    Article  CAS  PubMed  Google Scholar 

  2. Chen BL, Yang ZX, Zhu YQ, Xia YD (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J Mater Chem A 2:16811–16831

    Article  CAS  Google Scholar 

  3. Yao JF, Wang HT (2014) Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem Soc Rev 43:4470–4493

    Article  CAS  PubMed  Google Scholar 

  4. Kaneti YV, Dutta S, Hossain MSA, Shiddiky MJA, Tung KL, Shieh FK, Tsung CK, Wu KCW, Yamauchi Y (2017) Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Adv Mater 29:1700213

    Article  CAS  Google Scholar 

  5. Kaur G, Rai RK, Tyagi D, Yao X, Li PZ, Yang XC, Zhao YL, Xu Q, Singh SK (2016) Room-temperature synthesis of bimetallic Co-Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. J Mater Chem A 4:14932–14938

    Article  CAS  Google Scholar 

  6. Zhang F, Wei YY, Wu XT, Jiang HY, Wang W, Li HX (2014) Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysis for [3+3] cycloaddition reactions. J Am Chem Soc 136:13963–13966

    Article  CAS  PubMed  Google Scholar 

  7. Han TT, Yang J, Liu YY, Ma JF (2016) Rhodamine 6G loaded zeolitic imidazolate framework-8 (ZIF-8) nanocomposites for highly selective luminescent sensing of Fe3+, Cr6+ and aniline. Microporous Mesoporous Mater 228:275–288

    Article  CAS  Google Scholar 

  8. Zheng M, Liu S, Guan XG, Xie ZG (2015) One-step synthesis of nanoscale zeolitic imidazolate frameworks with high curcumin loading for treatment of cervical cancer. ACS Appl Mater Interfaces 7:22181–22187

    Article  CAS  PubMed  Google Scholar 

  9. Kwon HT, Jeong HK (2013) In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J Am Chem Soc 135:10763–10768

    Article  CAS  PubMed  Google Scholar 

  10. Zhong S, Zhan CX, Cao DP (2015) Zeolitic imidazolate framework-derived porous carbons as high performance supercapacitor electrode materials. Carbon 85:51–59

    Article  CAS  Google Scholar 

  11. Duan JT, Pan YC, Pacheco F, Litwiller E, Lai ZP, Pinnau I (2015) High-performance polyamide thin-film-nanocomposite reverse osmosis membrane containing hydrophobic zeolitic imidazolate framework-8. J Membr Sci 476:303–310

    Article  CAS  Google Scholar 

  12. Wang QQ, Zhang XP, Huang L, Zhang ZQ, Dong SJ (2017) GOx@ZIF-8(NiPd) nanoflower: an artificial enzyme system for tandem catalysis. Angew Chem Int Ed 56:16082–16085

    Article  CAS  Google Scholar 

  13. Kumar R, Jayaramulu K, Maji TK, Rao CNR (2013) Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties. Chem Commun 49:4947–4949

    Article  CAS  Google Scholar 

  14. Wang XR, Chi CL, Tao JF, Peng YW, Ying SM, Qian YH, Dong JQ, Hu ZG, Gu YD, Zhao D (2016) Improving the hydrogen selectivity of graphene oxide membrane by reducing non-selective pores with intergrown ZIF-8 crystals. Chem Commun 52:8087–8090

    Article  CAS  Google Scholar 

  15. Yu GG, Xia JF, Zhang FF, Wang ZH (2017) Hierarchical and hybrid RGO/ZIF-8 nanocomposite as electrochemical sensor for ultrasensitive determination of dopamine. J Electroanal Chem 801:496–502

    Article  CAS  Google Scholar 

  16. Mao JJ, Ge MZ, Huang JY, Lai YK, Lin CJ, Zhang KQ, Meng K, Tang YX (2017) Constructing multifunctional MOF@rGO hydro−/aerogels by the self-assembly process for customized water remediation. J Mater Chem A 5:11873–11881

    Article  CAS  Google Scholar 

  17. Li CX, Hu CG, Zhao Y, Song L, Zhang J, Huang RD, Qu LT (2014) Decoration of graphene network with metal-organic frameworks for enhanced electrochemical capacitive behavior. Carbon 78:231–242

    Article  CAS  Google Scholar 

  18. Tian ZF, Yao XX, Zhu YF (2017) Simple synthesis of multifunctional zeolitic imidazolate frameworks-8/graphene oxide nanocrystals with controlled drug release and photothermal effect. Microporous Mesoporous Mater 237:160–167

    Article  CAS  Google Scholar 

  19. Chen XW, Hai X, Wang JH (2016) Graphene/graphene oxide and their derivatives in the separation/isolation and preconcentration of protein species: a review. Anal Chim Acta 922:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Liu JW, Zhang Y, Chen XW, Wang JH (2014) Graphene oxide-rare earth metal organic framework composites for the selective isolation of hemoglobin. ACS Appl Mater Interfaces 6:10196–10204

    Article  CAS  PubMed  Google Scholar 

  21. Li L, Fan L, Dai Y, Kan X (2015) Recognition and determination of bovine hemoglobin using a gold electrode modified with gold nanoparticles and molecularly imprinted self-polymerized dopamine. Microchim Acta 182:2477–2483

    Article  CAS  Google Scholar 

  22. Zhang R, Xu S, Luo J, Liu X (2015) Molecularly imprinted photo-sensitive polyglutamic acid nanoparticles for electrochemical sensing of hemoglobin. Microchim Acta 182:175–183

    Article  CAS  Google Scholar 

  23. Liu JW, Liang YX, Shen JW, Bai Q (2018) Polymeric ionic liquid-assembled graphene-immobilized silica composite for selective isolation of human serum albumin from human whole blood. Anal Bioanal Chem 410:573–584

    Article  CAS  PubMed  Google Scholar 

  24. Pan YC, Liu YY, Zeng GF, Zhao L, Lai ZP (2011) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun 47:2071–2073

    Article  CAS  Google Scholar 

  25. He M, Yao JF, Liu Q, Wang K, Chen FY, Wang HT (2014) Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous 184:55–60

    Article  CAS  Google Scholar 

  26. Chen BL, Zhu YQ, Xia YD (2015) Controlled in situ synthesis of graphene oxide/zeolitic imidazolate framework composites with enhanced CO2 uptake capacity. RSC Adv 5:30464–30471

    Article  CAS  Google Scholar 

  27. Jian MP, Liu B, Liu RP, Qu JH, Wang HT, Zhang XW (2015) Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv 5:48433–48441

    Article  CAS  Google Scholar 

  28. Chen BL, Bai FH, Zhu YQ, Xia YD (2014) Hofmeister anion effect on the formation of ZIF-8 with tunable morphologies and textural properties from stoichiometric precursors in aqueous ammonia solution. RSC Adv 4:47421–47428

    Article  CAS  Google Scholar 

  29. Dougherty DA (2013) The cation-π interaction. Acc Chem Res 46:885–893

    Article  CAS  PubMed  Google Scholar 

  30. Dougherty DA (2007) Cation-π interactions involving aromatic amino acids. J Nutr 137:1504S–1508S

    Article  CAS  PubMed  Google Scholar 

  31. Zheng JN, Lin Z, Lin G, Yang HH, Zhang L (2015) Preparation of magnetic metal-organic framework nanocomposites for highly specific separation of histidine-rich proteins. J Mater Chem B 3:2185–2191

    Article  CAS  Google Scholar 

  32. Wang YQ, Zhu ZH, Zhang HM, Chen J, Tang BP, Cao J (2016) Investigation on the conformational structure of hemoglobin on graphene oxide. Mater Chem Phys 182:272–279

    Article  CAS  Google Scholar 

  33. Anirudhan TS, Rejeena SR (2013) Selective adsorption of hemoglobin using polymer-grafted-magnetic nanocellulose composite. Carbohydr Polym 93:518–527

    Article  CAS  PubMed  Google Scholar 

  34. Qi C, Zhu YJ, Wu CT, Sun TW, Chen F, Wu J (2016) Magnesium phosphate pentahydrate nanosheets: microwave-hydrothermal rapid synthesis using creatine phosphate as an organic phosphorous source and application in protein adsorption. J Colloid Interface Sci 462:297–306

    Article  CAS  PubMed  Google Scholar 

  35. Zhang DD, Hu LL, Chen Q, Chen XW, Wang JH (2016) Selective adsorption of hemoglobin with polyoxometalate-derived hybrid by solidification of super-lacunary phosphotungstate polyoxoanions. Talanta 159:23–28

    Article  CAS  PubMed  Google Scholar 

  36. Zhang XX, Tan JP, Xu XX, Shi FN, Li GL, Yang YQ (2017) A coordination polymer based magnetic adsorbent material for hemoglobin isolation from human whole blood, highly selective and recoverable. J Solid State Chem 253:219–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Numbers: 21605122, 21505104, 21545007, and 21575114), the Natural Science Foundation of Shaanxi Province (2018JQ2011, 2018JZ2001) and the Foundation of Key Laboratory in Shaanxi Province (Grant Numbers: 16JS116, 15JS115).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiawei Liu or Quan Bai.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liang, Y., Liang, Q. et al. Tunable composites prepared from graphene oxide and zeolitic imidazolate framework-8 for improved selective isolation of hemoglobin. Microchim Acta 185, 361 (2018). https://doi.org/10.1007/s00604-018-2904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2904-5

Keywords

Navigation