Skip to main content
Log in

Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric method is presented for the determination of the antibiotic ofloxacin (OFL) in aqueous solution. It is based on the use of an aptamer and gold nanoparticles (AuNPs). In the absence of OFL, the AuNPs are wrapped by the aptamer and maintain dispersed even at the high NaCl concentrations. The solution with colloidally dispersed AuNPs remains red and has an absorption peak at 520 nm. In the presence of OFL, it will bind to the aptamer which is then released from the AuNPs. Hence, AuNPs will aggregate in the salt solution, and color gradually turns to blue, with a new absorption peak at 650 nm. This convenient and specific colorimetric assay for OFL has a linear response in the 20 to 400 nM OFL concentration range and a 3.4 nM detection limit. The method has a large application potential for OFL detection in environmental and biological samples.

Schematic of a sensitive and simple colorimetric aptasensor for ofloxacin (OFL) detection in tap water and synthesic urine. The assay is based on the salt-induced aggregation of gold nanoparticles which results in a color change from red to purple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ballesteros O, Vílchez JL, Navalón A (2002) Determination of the antibacterial ofloxacin in human urine and serum samples by solid-phase spectrofluorimetry. J Pharm Biomed Anal 30(4):1103–1110

    Article  CAS  PubMed  Google Scholar 

  2. Gao L, Shi Y, Li W, Liu J, Cai Y (2015) Occurrence and distribution of antibiotics in urban soil in Beijing and Shanghai, China. Environ Sci Pollut Res Int 22(15):11360–11371

    Article  CAS  PubMed  Google Scholar 

  3. Heberer T, Massmann G, Fanck B, Taute T, Dünnbier U (2008) Behaviour and redox sensitivity of antimicrobial residues during bank filtration. Chemosphere 73(4):451–460

    Article  CAS  PubMed  Google Scholar 

  4. Francis PS, Adcock JL (2005) Chemiluminescence methods for the determination of ofloxacin. Anal Chim Acta 541:3–12

    Article  CAS  Google Scholar 

  5. Sun HW, He P, Lv YK, Liang SX (2007) Effective separation and simultaneous determination of seven fluoroquinolones by capillary electrophoresis with diode-array detector. J Chromatogr B 852:145–151

    Article  CAS  Google Scholar 

  6. Timofeeva I, Timofeev S, Moskvin L, Bulatov A (2016) A dispersive liquid-liquid microextraction using a switchable polarity dispersive solvent. Automated HPLC–FLD determination of ofloxacin in chicken meat. Anal Chim Acta 949:35–42

    Article  CAS  PubMed  Google Scholar 

  7. Wu F, Xu F, Chen L, Jiang B, Sun W, Wei X (2016) Cuprous oxide/nitrogen-doped graphene nanocomposites as electrochemical sensors for ofloxacin determination. Chem Res Chin Univ 32(3):468–473

    Article  CAS  Google Scholar 

  8. Wong A, Silva TA, Vicentini FC, Fatibello-Filho O (2016) Electrochemical sensor based on graphene oxide and ionic liquid for ofloxacin determination at nanomolar levels. Talanta 161:333–341

    Article  CAS  PubMed  Google Scholar 

  9. Jiang Z, Liu Q, Tang Y, Zhang M (2017) Electrochemical sensor based on a novel Pt−Au bimetallic nanoclusters decorated on reduced graphene oxide for sensitive detection of ofloxacin. Electroanal 29(2):602–608

    Article  CAS  Google Scholar 

  10. Mao B, Qu F, Zhu S, You J (2016) Fluorescence turn-on strategy based on silver nanoclusters–Cu2+ system for trace detection of quinolones. Sensors Actuators B Chem 234:338–344

    Article  CAS  Google Scholar 

  11. Chan KP, Chu KO, Lai WW–K, Choy KW, Wang CC, Lam DS–C, Pang CP (2006) Determination of ofloxacin and moxifloxacin and their penetration in human aqueous and vitreous humor by using high-performance liquid chromatography fluorescence detection. Anal Biochem 353(1):30–36

    Article  CAS  PubMed  Google Scholar 

  12. Amoli-Diva M, Pourghazi K, Hajjaran S (2016) Dispersive micro–solid phase extraction using magnetic nanoparticle modified multi-walled carbon nanotubes coupled with surfactant-enhanced spectrofluorimetry for sensitive determination of lomefloxacin and ofloxacin from biological samples. Mater Sci Eng C 60:30–36

    Article  CAS  Google Scholar 

  13. Zhan X, Hu G, Wagberg T, Zhan S, Xu H, Zhou P (2016) Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim Acta 183(2):723–729

    Article  CAS  Google Scholar 

  14. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  PubMed  Google Scholar 

  15. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  PubMed  Google Scholar 

  16. Ni X, Xia B, Wang L, Ye J, Du G, Feng H, Zhou X, Zhang T, Wang W (2017) Fluorescent aptasensor for 17β–estradiol determination based on gold nanoparticles quenching the fluorescence of rhodamine B. Anal Biochem 523:17–23

    Article  CAS  PubMed  Google Scholar 

  17. Nikolaus N, Strehlitz B (2014) DNA-aptamers binding aminoglycoside antibiotics. Sensors 14(2):3737–3755

    Article  CAS  PubMed  Google Scholar 

  18. Charbgoo F, Soltani F, Taghdisi SM, Abnous K, Ramezani M (2016) Nanoparticles application in high sensitive aptasensor design. TrAC Trends Anal Chem 85:85–97

    Article  CAS  Google Scholar 

  19. Priyadarshini E, Pradhan N (2017) Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sensors Actuators B Chem 238:888–902

    Article  CAS  Google Scholar 

  20. He L, Luo Y, Zhi W, Wu Y, Zhou P (2013) A colorimetric aptamer biosensor based on gold nanoparticles for the ultrasensitive and specific detection of tetracycline in milk. Aust J Chem 66(4):485–490

    Article  CAS  Google Scholar 

  21. Du G, Zhang D, Xia B, Xu L, Wu S, Zhan S, Ni X, Zhou X, Wang L (2016) A label–free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Microchim Acta 183(7):2251–2258

    Article  CAS  Google Scholar 

  22. Zhang D, Yang J, Ye J, Xu L, Xu H, Zhan S, Xia B, Wang L (2016) Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles. Anal Biochem 499:51–56

    Article  CAS  PubMed  Google Scholar 

  23. Ramezani M, Danesh NM, Lavaee P, Abnous K, Taghdisi SM (2015) A novel colorimetric triple–helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron 70:181–187

    Article  CAS  PubMed  Google Scholar 

  24. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme–directed assembly of gold nanoparticles. J Am Chem Soc 125(22):6642–6643

    Article  CAS  PubMed  Google Scholar 

  25. Xiong W, Zhou L, Liu S (2016) Development of gold–doped carbon foams as a sensitive electrochemical sensor for simultaneous determination of Pb (II) and Cu (II). Chem Eng J 284:650–656

    Article  CAS  Google Scholar 

  26. Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta 751:24–43

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1(1):246–252

    Article  CAS  PubMed  Google Scholar 

  28. Kim YS, Kim JH, Kim IA, Lee SJ, Jurng J, Gu MB (2010) A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens Bioelectron 26(4):1644–1649

    Article  CAS  PubMed  Google Scholar 

  29. Reinemann C, von Fritsch UF, Rudolph S, Strehlitz B (2016) Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosens Bioelectron 77:1039–1047

    Article  CAS  PubMed  Google Scholar 

  30. Pilehvar S, Reinemann C, Bottari F, Vanderleyden E, Van Vlierberghe S, Blust R, Strehlitz B, De Wael K (2017) A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sensors Actuators B Chem 240:1024–1035

    Article  CAS  Google Scholar 

  31. Cai Y, Cai Y, Mou S, Lu Y (2006) High performance liquid chromatography-ultraviolet photometric detection for the simultaneous determination of cephalosporins in human urine and bovine milk. Chin J Anal Chem 34(6):745–748

    CAS  Google Scholar 

  32. Wang L, Liu X, Hu X, Song S, Fan C (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun 36:3780–3782

    Article  CAS  Google Scholar 

  33. Wu Y, Zhan S, Xing H, He L, Xu L, Zhou P (2012) Nanoparticles assembled by aptamers and crystal violet for arsenic (III) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay. Nanoscale 4(21):6841–6849

    Article  CAS  PubMed  Google Scholar 

  34. Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Cheminform 39(52):2363–2371

    Google Scholar 

  35. Liu X, Tian Q, Lin T, Ke–Qian X (2012) Nanogold labeling–stepwise silver staining method for rapid detection of staphylococcus aureus. Chin J Biochem Mol Biol 7:015

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by Shanghai Pujiang Program (No. 16PJD026), the National Key Research and Development Program of China (2017YFD0800704), and the Natural Science Foundation of Zhejiang Province (LY18B070029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lumei Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, L., Shen, G. et al. Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. Microchim Acta 185, 355 (2018). https://doi.org/10.1007/s00604-018-2895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2895-2

Keywords

Navigation