Skip to main content
Log in

Synthesis of Au@Ag core-shell nanostructures with a poly(3,4-dihydroxy-L-phenylalanine) interlayer for surface-enhanced Raman scattering imaging of epithelial cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Poly(3,4-dihydroxy-L-phenylalanine) (polyDOPA) is a stable and biocompatible reducing agent. A versatile strategy is described here for the synthesis of core-shell Au@Ag nanostructures containing a polyDOPA interlayer. The latter provides abundant sites for deposition of nanocomposites, to immobilize molecules and to grow shells. The Au@polyDOPA@Ag nanoparticles are shown to generate strong and stable surface-enhanced Raman spectroscopy (SERS) signals compared to bare AuNPs and bare AgNPs. Folic acid was then immobilized on Au@polyDOPA@Ag nanoparticles and then applied to SERS imaging of human lung adenocarcinoma cell line A549 by the specific recognition of the folic acid receptor. The folic acid-conjugated SERS tags were promising to be nanoplatforms for imaging of cancer cells.

An Au@Ag core-shell nanostructures SERS nanotag with a polyDOPA interlayer was fabricated and then applied to SERS imaging of epithelial cells. (DOPA: 3,4-Dihydroxy-[L-phenylalanine]; FA: folic acid; 4-MBA: 4-mercaptobenzoic acid).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132. https://doi.org/10.1146/annurev-matsci-062910-100429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114(9):5057–5115. https://doi.org/10.1021/cr400407a

    Article  CAS  PubMed  Google Scholar 

  3. Krogsgaard M, Nue V, Birkedal H (2016) Mussel-inspired materials: self-healing through coordination chemistry. Chem Eur J 22(3):844–857. https://doi.org/10.1002/chem.201503380

    Article  CAS  PubMed  Google Scholar 

  4. Zhou J, Wang P, Wang C, Goh YT, Fang Z, Messersmith PB, Duan H (2015) Versatile Core–Shell nanoparticle@metal–organic framework Nanohybrids: exploiting mussel-inspired Polydopamine for tailored structural integration. ACS Nano 9(7):6951–6960. https://doi.org/10.1021/acsnano.5b01138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang B, Lim C, Hwang DS, Cha HJ (2016) Switch of surface adhesion to cohesion by Dopa-Fe3+ complexation, in response to microenvironment at the mussel plaque/substrate Interface. Chem Mater 28(21):7982–7989. https://doi.org/10.1021/acs.chemmater.6b03676

    Article  CAS  Google Scholar 

  6. Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21(4):431–434. https://doi.org/10.1002/adma.200801222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu Q, Li S, Sun Y, Wang J (2017) Hollow gold nanoparticle-enhanced SPR based sandwich immunoassay for human cardiac troponin I. Microchim Acta 184(7):2395–2402. https://doi.org/10.1007/s00604-017-2245-9

    Article  CAS  Google Scholar 

  8. Zhu Q, Pan Q (2014) Mussel-inspired direct immobilization of nanoparticles and application for oil-water separation. ACS Nano 8(2):1402–1409. https://doi.org/10.1021/nn4052277

    Article  CAS  PubMed  Google Scholar 

  9. Bagheri H, Banihashemi S, Zandian FK (2016) Microextraction of antidepressant drugs into syringes packed with a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrrole. Microchim Acta 183(1):195–202. https://doi.org/10.1007/s00604-015-1606-5

    Article  CAS  Google Scholar 

  10. Wang D, Duan H, Lu J, Lu C (2017) Fabrication of thermo-responsive polymer functionalized reduced graphene oxide@Fe3O4@au magnetic nanocomposites for enhanced catalytic applications. J Mater Chem A 5(10):5088–5097. https://doi.org/10.1039/c6ta09772c

    Article  CAS  Google Scholar 

  11. Sun C, Gao M, Zhang X (2017) Surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal ablation of target cancer cells using polydopamine-encapsulated gold nanorods as multifunctional agents. Anal Bioanal Chem 409(20):4915–4926. https://doi.org/10.1007/s00216-017-0435-2

    Article  CAS  PubMed  Google Scholar 

  12. Zhong X, Yang K, Dong Z, Yi X, Wang Y, Ge C, Zhao Y, Liu Z (2015) Polydopamine as a biocompatible multifunctional Nanocarrier for combined radioisotope therapy and chemotherapy of Cancer. Adv Funct Mater 25(47):7327–7336. https://doi.org/10.1002/adfm.201503587

    Article  CAS  Google Scholar 

  13. Xie Y, Yan B, Xu H, Chen J, Liu Q, Deng Y, Zeng H (2014) Highly regenerable mussel-inspired Fe3O4@Polydopamine-ag Core–Shell microspheres as catalyst and adsorbent for methylene blue removal. ACS APPL MATER INTER 6(11):8845–8852. https://doi.org/10.1021/am501632f

    Article  CAS  Google Scholar 

  14. Cong Y, Xia T, Zou M, Li Z, Peng B, Guo D, Deng Z (2014) Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/ag nanocomposite particles with enhanced antibacterial activities. J Mater Chem B 2(22):3450–3461. https://doi.org/10.1039/C4TB00460D

    Article  CAS  Google Scholar 

  15. Zeng Y, Zhang D, Wu M, Liu Y, Zhang X, Li L, Li Z, Han X, Wei X, Liu X (2014) Lipid-AuNPs@PDA Nanohybrid for MRI/CT imaging and Photothermal therapy of hepatocellular carcinoma. ACS APPL MATER INTER 6(16):14266–14277. https://doi.org/10.1021/am503583s

    Article  CAS  Google Scholar 

  16. Hu Y, Wang D, Li G (2015) Mussel inspired redox surface for one step visual and colorimetric detection of Hg2+ during the formation of Ag@DOPA@Hg nanoparticles. Anal Methods 7(15):6103–6108. https://doi.org/10.1039/C5AY01272D

    Article  CAS  Google Scholar 

  17. Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53(19):4756–4795. https://doi.org/10.1002/anie.201205748

    Article  CAS  Google Scholar 

  18. Luo S, Sivashanmugan K, Liao J, Yao C, Peng H (2014) Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens Bioelectron 61:232–240. https://doi.org/10.1016/j.bios.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  19. Alessandri I, Lombardi JR (2016) Enhanced Raman scattering with dielectrics. Chem Rev 116(24):14921–14981. https://doi.org/10.1021/acs.chemrev.6b00365

    Article  CAS  PubMed  Google Scholar 

  20. Jaworska A, Wojcik T, Malek K, Kwolek U, Kepczynski M, Ansary AA, Chlopicki S, Baranska M (2015) Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Microchim Acta 182(1):119–127. https://doi.org/10.1007/s00604-014-1307-5

    Article  CAS  Google Scholar 

  21. Bamrungsap S, Treetong A, Apiwat C, Wuttikhun T, Dharakul T (2016) SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold-silver nanorods. Microchim Acta 183(1):249–256. https://doi.org/10.1007/s00604-015-1639-9

    Article  CAS  Google Scholar 

  22. Yan W, Yang L, Zhuang H, Wu H, Zhang J (2016) Engineered “hot” core–shell nanostructures for patterned detection of chloramphenicol. Biosens Bioelectron 78:67–72. https://doi.org/10.1016/j.bios.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  23. Wang W, Wang W, Liu L, Xu L, Kuang H, Zhu J, Xu C (2016) Nanoshell-enhanced Raman spectroscopy on a microplate for staphylococcal enterotoxin B sensing. ACS APPL MATER INTER 8(24):15591–15597. https://doi.org/10.1021/acsami.6b02905

    Article  CAS  Google Scholar 

  24. Wang Y, Yan B, Chen L (2013) SERS tags: novel optical Nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428. https://doi.org/10.1021/cr300120g

    Article  CAS  PubMed  Google Scholar 

  25. Shen W, Lin X, Jiang C, Li C, Lin H, Huang J, Wang S, Liu G, Yan X, Zhong Q, Ren B (2015) Reliable quantitative SERS analysis facilitated by Core-Shell nanoparticles with embedded internal standards. Angew Chem Int Ed 54(25):7308–7312. https://doi.org/10.1002/anie.201502171

    Article  CAS  Google Scholar 

  26. Chen M, Luo W, Zhang Z, Zhu F, Liao S, Yang H, Chen X (2017) Sensitive surface enhanced Raman spectroscopy (SERS) detection of methotrexate by core-shell-satellite magnetic microspheres. TALANTA 171:152–158. https://doi.org/10.1016/j.talanta.2017.04.072

    Article  CAS  PubMed  Google Scholar 

  27. Zhang C, Hao R, Zhao B, Hao Y, Liu Y (2017) A ternary functional ag@GO@au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform. Appl Surf Sci 409:306–313. https://doi.org/10.1016/j.apsusc.2017.03.023

    Article  CAS  Google Scholar 

  28. Wang S, Low PS (1998) Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release 53(1):39–48. https://doi.org/10.1016/S0168-3659(97)00236-8

    Article  CAS  PubMed  Google Scholar 

  29. Huang Q, Liu M, Guo R, Mao L, Wan Q, Zeng G, Huang H, Deng F, Zhang X, Wei Y (2016) Facile synthesis and characterization of poly(levodopa)-modified silica nanocomposites via self-polymerization of levodopa and their adsorption behavior toward Cu2+. J Mater Sci 51(21):9625–9637. https://doi.org/10.1007/s10853-016-0178-z

    Article  CAS  Google Scholar 

  30. Zhou J, Xiong Q, Ma J, Ren J, Messersmith PB, Chen P, Duan H (2016) Polydopamine-enabled approach toward tailored Plasmonic Nanogapped nanoparticles: from Nanogap engineering to multifunctionality. ACS Nano 10(12):11066–11075. https://doi.org/10.1021/acsnano.6b05951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nam J, Oh J, Lee H, Suh YD (2016) Plasmonic Nanogap-enhanced Raman scattering with nanoparticles. ACCOUNTS CHEM RES 49(12):2746–2755. https://doi.org/10.1021/acs.accounts.6b00409

    Article  CAS  Google Scholar 

  32. Marks HL, Pishko MV, Jackson GW, Coté GL (2014) Rational Design of a Bisphenol a Aptamer Selective Surface-Enhanced Raman Scattering Nanoprobe. Anal Chem 86(23):11614–11619. https://doi.org/10.1021/ac502541v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang C, Chen W (2018) A SERS method with attomolar sensitivity: a case study with the flavonoid catechin. Microchim Acta 185(2):120. https://doi.org/10.1007/s00604-017-2662-9

    Article  CAS  Google Scholar 

  34. Zong C, Xu M, Xu L, Wei T, Ma X, Zheng X, Hu R, Ren B (2018) Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 118(10):4946–4980. https://doi.org/10.1021/acs.chemrev.7b00668

    Article  CAS  PubMed  Google Scholar 

  35. Shi J, Sun X, Li J, Man H, Shen J, Yu Y, Zhang H (2015) Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 37:260–270. https://doi.org/10.1016/j.biomaterials.2014.10.033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Nos. 21575168, 21475153 and 21675178), the Guangdong Provincial Natural Science Foundation of China (Nos. 2015A030311020 and 2017A030313070), and the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China (No. 2015A030401036), and the Guangzhou Science and Technology Program of China (Nos. 201704020040 and 201604020165), respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuling Hu or Gongke Li.

Ethics declarations

The author(s) declare that they have no competing no interest.

Electronic supplementary material

ESM 1

(DOC 30.2 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, H., Jiang, P., Hu, Y. et al. Synthesis of Au@Ag core-shell nanostructures with a poly(3,4-dihydroxy-L-phenylalanine) interlayer for surface-enhanced Raman scattering imaging of epithelial cells. Microchim Acta 185, 353 (2018). https://doi.org/10.1007/s00604-018-2873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2873-8

Keywords

Navigation