Skip to main content
Log in

Sandwich electrochemical thrombin assay using a glassy carbon electrode modified with nitrogen- and sulfur-doped graphene oxide and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Graphene oxide doped with nitrogen and sulfur was decorated with gold nanoparticles (AuNP-SN-GO) and applied as a substrate to modify a glassy carbon electrode (GCE). An aptamer against the model protein thrombin was self-assembled on the modified GCE which then was exposed to thrombin. Following aptamer-thrombin interaction, biotin-labeled DNA and aptamer 2 are immobilized on another AuNP-SN-GO hybrid and then are reacted with the thrombin/AuNP-SN-GO/GCE to form a sandwich. The enzyme label horseradish peroxidase (HRP) was then attached to the electrode by biotin–avidin interaction. HRP catalyzes the oxidation of hydroquinone by hydrogen peroxide. This generates a strong electrochemical signal that increases linearly with the logarithm of thrombin concentration in the range from 1.0 × 10−13 M to 1.0 × 10−8 M with a detection limit of 2.5 × 10−14 M (S/N = 3). The assay is highly selective. It provides a promising strategy for signal amplification. In our perception, it has a large potential for sensitive and selective detection of analytes for which appropriate aptamers are available.

A sandwich-type electrochemical aptasensor is fabricated for detection of thrombin using a glassy carbon electrode modified with nitrogen- and sulfur-doped graphene oxide and gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shuai HL, Wu X, Huang KJ (2017) Molybdenum disulfide sphere-based electrochemical aptasensors for protein detection. J Mater Chem B 5:5362–5372

    Article  CAS  Google Scholar 

  2. Huang KJ, Liu YJ, Zhai QF (2015) Ultrasensitive biosensing platform based on layered vanadium disulfide-graphene composites coupling with tetrahedron-structured DNA probes and exonuclease III assisted signal amplification. J Mater Chem B 3:8180–8187

    Article  CAS  Google Scholar 

  3. Chen YX, Huang KJ, He LL, Wang YH (2018) Tetrahedral DNA probe coupling with hybridization chain reaction for competitive thrombin aptasensor. Biosens Bioelectron 100:274–281

    Article  CAS  PubMed  Google Scholar 

  4. Chen YX, Huang KJ, Niu KX (2018) Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review. Biosens Bioelectron 99:612–624

    Article  CAS  PubMed  Google Scholar 

  5. Shuai HL, Wu X, Huang KJ, Zhai ZB (2017) Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered hybridization chain reaction. Biosens Bioelectron 94:616–625

    Article  CAS  PubMed  Google Scholar 

  6. Wang YH, Huang KJ, Wu X (2017) Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review. Biosens Bioelectron 97:305–316

    Article  CAS  PubMed  Google Scholar 

  7. Liu YT, Wang HJ, Xiong CY, Yuan YL, Chai YQ, Yuan R (2016) A sensitive electrochemiluminescence immunosensor based on luminophore capped Pd@Au core-shell nanoparticles as signal tracers and ferrocenyl compounds as signal enhancers. Biosens Bioelectron 81:334

    Article  CAS  PubMed  Google Scholar 

  8. Xu YH, Wang EK (2012) Electrochemical biosensors based on magnetic micro/nano particles. Electrochim Acta 84:62–73

    Article  CAS  Google Scholar 

  9. Zaidi SA (2018) Utilization of an environmentally-friendly monomer for an efficient and sustainable adrenaline imprinted electrochemical sensor using grapheme. Electrochim Acta 274:370–377

    Article  CAS  Google Scholar 

  10. Li SJ, Zhang JC, Li J, Yang HY, Meng JJ, Zhang B (2018) A 3D sandwich structured hybrid of gold nanoparticles decorated MnO2/graphene-carbon nanotubes as high performance H2O2 sensors. Sensors Actuators B Chem 260:1–11

    Article  CAS  Google Scholar 

  11. Ensafi AA, Nasr-Esfahani P, Rezaei B (2018) Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride. Sensors Actuators B Chem 257:889–896

    Article  CAS  Google Scholar 

  12. Kwon SS, Shin JH, Choi J, Nam SW, Park W (2018) Nanotube-on-graphene heterostructures for three-dimensional nano/bio-interface. Sensors Actuators B Chem 254:16

    Article  CAS  Google Scholar 

  13. Aslan S, Anik Ü (2016) Microbial glucose biosensors based on glassy carbon paste electrodes modified with Gluconobacter Oxydans and graphene oxide or graphene-platinum hybrid nanoparticles. Microchim Acta 183:73–81

    Article  CAS  Google Scholar 

  14. Chen Z, Hou LQ, Cao Y, Tang YS, Li YF (2018) Gram-scale production of B, N co-doped graphene-like carbon for high performance supercapacitor electrodes. Appl Surf Sci 435:937–944

    Article  CAS  Google Scholar 

  15. Tepeli Y, Anik U (2016) Preparation, characterization and electrochemical application of graphene-metallic nanocomposites. Electroanal 28:3048

    Article  CAS  Google Scholar 

  16. Fan HX, Li Y, Wu D, Ma HM, Mao KX, Fan DW, Du B, Li H, Wei Q (2012) Electrochemical bisphenol a sensor based on N-doped graphene sheets. Anal Chim Acta 711:24–28

    Article  CAS  PubMed  Google Scholar 

  17. Chen S, Duan JJ, Zheng Y, Chen XM, Du XW, Jaroniec M, Qiao SZ (2015) Ionic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and Zn–air batteries. Energ Stor Mater 1:17–24

    Google Scholar 

  18. Huang BT, Xiao LL, Dong HF, Zhang XJ, Gan W, Mahboob S, Al-Ghanim KA, Yuan QH, Li YC (2017) Electrochemical sensing platform based on molecularly imprinted polymer decorated N,S co-doped activated graphene for ultrasensitive and selective determination of cyclophosphamide. Talanta 164:601–607

    Article  CAS  PubMed  Google Scholar 

  19. Zhang HH, Niu YL, Hu WH (2017) Nitrogen/sulfur-doping of graphene with cysteine as a heteroatom source for oxygen reduction electrocatalysis. J Colloid Interface Sci 505:32

    Article  CAS  PubMed  Google Scholar 

  20. Hmar JJL, Majumder T, Dhar S, Mondal SP (2016) Sulfur and nitrogen co-doped graphene quantum dot decorated ZnO nanorod/polymer hybrid flexible device for photosensing applications. Thin Solid Films 612:274–283

    Article  CAS  Google Scholar 

  21. Tian Y, Mei R, Xue DZ, Zhang X, Peng W (2016) Enhanced electrocatalytic hydrogen evolution in graphene via defect engineering and heteroatoms co-doping. Electrochim Acta 219:781–789

    Article  CAS  Google Scholar 

  22. Li MR, Wang W, Chen Z, Song ZL, Luo XL (2018) Electrochemical determination of paracetamol based on Au@graphene core-shell nanoparticles doped conducting polymer PEDOT nanocomposite. Sensors Actuators B Chem 260:778–785

    Article  CAS  Google Scholar 

  23. Li JH, Jiang JB, Xu ZF, Liu MQ, Tang SP, Yang CM, Qian D (2018) Facile synthesis of Ag@Cu2O heterogeneous nanocrystals decorated N-doped reduced graphene oxide with enhanced electrocatalytic activity for ultrasensitive detection of H2O2. Sensors Actuators B Chem 260:529

    Article  CAS  Google Scholar 

  24. Liu W, Hiekel K, Hübner R, Sun HJ, Ferancove A, Sillanpää M (2018) Pt and Au bimetallic and monometallic nanostructured amperometric sensors for direct detection of hydrogen peroxide: influences of bimetallic effect and silica support. Sensors Actuators B Chem 255:1325–1334

    Article  CAS  Google Scholar 

  25. Wang YH, Huang KJ, Wu X, Ma YY, Song DL, Du CY, Chang SH (2018) Ultrasensitive supersandwich-type biosensor for enzyme-free amplified microRNA detection based on N-doped graphene/Au nanoparticles and hemin/G-quadruplexes. J Mater Chem B 6:2134–2142

    Article  CAS  Google Scholar 

  26. Kalyoncu D, Tepeli Y, Kirgöz UC, Buyraç A, Ül A (2017) Electro-nano diagnostic platforms for simultaneous detection of multiple cancer biomarkers. Electroanal 29:2832–2838

    Article  CAS  Google Scholar 

  27. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  28. Chen YX, Huang KJ, Lin F, Fang LX (2017) Ultrasensitive electrochemical sensing platform based on graphene wrapping SnO2 nanocorals and autonomous cascade DNA duplication strategy. Talanta 175:168

    Article  CAS  PubMed  Google Scholar 

  29. Fan TT, Du Y, Yao Y, Wu J, Meng S, Luo JJ, Zhang X, Yang D, Wang CY, Qian Y, Gao FL (2018) Rolling circle amplification triggered poly adenine-gold nanoparticles production for label-free electrochemical detection of thrombin. Sensors Actuators B Chem 266:9

    Article  CAS  Google Scholar 

  30. Niu YL, Chu ML, Xu P, Meng SS, Zhou Q, Zhao WB, Zhao B, Shen J (2018) An aptasensor based on heparin-mimicking hyperbranched polyester with anti-biofouling interface for sensitive thrombin detection. Biosens Bioelectron 101:174–180

    Article  CAS  PubMed  Google Scholar 

  31. Chen S, Liu P, Su K, Li X, Qin Z, Xu W, Chen J, Li CR, Qiu JF (2018) Electrochemical aptasensor for thrombin using co-catalysis of hemin/G-quadruplex DNAzyme and octahedral Cu2O-Au nanocomposites for signal amplification. Biosens Bioelectron 99:338–345

    Article  CAS  PubMed  Google Scholar 

  32. Wu YM, Zou LN, Lei S, Yu Q, Ye BX (2017) Highly sensitive electrochemical thrombin aptasensor based on peptide-enhanced electrocatalysis of hemin/G-quadruplex and nanocomposite as nanocarrier. Biosens Bioelectron 97:317–324

    Article  CAS  PubMed  Google Scholar 

  33. Xie SB, Ye JW, Yuan YL, Chai YQ, Yuan R (2015) A multifunctional hemin@metal-organic framework and its application to construct an electrochemical aptasensor for thrombin detection. Nanoscale 7:18232–18238

    Article  CAS  PubMed  Google Scholar 

  34. Su ZH, Xu XL, Xu HT, Zhang Y, Li CR, Ma Y, Song DC, Xie QJ (2017) Amperometric thrombin aptasensor using a glassy carbon electrode modified with polyaniline and multiwalled carbon nanotubes tethered with a thiolated aptamer. Microchim Acta 184:1677

    Article  CAS  Google Scholar 

  35. Wen CY, Bi JH, Wu LL, Zeng JB (2018) Aptamer-functionalized magnetic and fluorescent nanospheres for one-step sensitive detection of thrombin. Microchim Acta 185:77

    Article  CAS  Google Scholar 

  36. Liu YY, Zhao YH, Fan Q, Khan MS, Li XJ, Zhang Y, Ma HM, Wei Q (2018) Aptamer based electrochemiluminescent thrombin assay using carbon dots anchored onto silver-decorated polydopamine nanospheres. Microchim Acta 185:85

    Article  CAS  Google Scholar 

  37. Wang L, Yang W, Li TF, Li D, Cui ZM, Wang Y, Ji SL, Song QX, Shu C, Ding L (2017) Colorimetric determination of thrombin by exploiting a triple enzyme-mimetic activity and dual-aptamer strategy. Microchim Acta 184:3145–3151

    Article  CAS  Google Scholar 

  38. Wang XY, Sun DP, Tong YL, Zhong YS, Chen ZG (2017) A voltammetric aptamer-based thrombin biosensor exploiting signal amplification via synergetic catalysis by DNAzyme and enzyme decorated AuPd nanoparticles on a poly(o-phenylenediamine) support. Microchim Acta 184:1791–1799

    Article  CAS  Google Scholar 

  39. Cao Y, Wang ZH, Cao JP, Mao XX, Chen GF, Zhao J (2017) A general protein aptasensing strategy based on untemplated nucleic acid elongation and the use of fluorescent copper nanoparticles: application to the detection of thrombin and the vascular endothelial growth factor. Microchim Acta 184:3697–3704

    Article  CAS  Google Scholar 

  40. He JC, Li GK, Hu YL (2017) Aptamer-involved fluorescence amplification strategy facilitated by directional enzymatic hydrolysis for bioassays based on a metal-organic framework platform: highly selective and sensitive determination of thrombin and oxytetracycline. Microchim Acta 184:2365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61301037), the Henan Science and Technology Cooperation Project (Grant No. 172106000014), the Cultivation Plan for Young Core Teachers in Universities of Henan Province (No. 2017GGJS072) and the Youth Backbone Teacher Training Program of Henan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoshan He.

Ethics declarations

The author declares that he has no competing interests.

Electronic supplementary material

ESM 1

(DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B. Sandwich electrochemical thrombin assay using a glassy carbon electrode modified with nitrogen- and sulfur-doped graphene oxide and gold nanoparticles. Microchim Acta 185, 344 (2018). https://doi.org/10.1007/s00604-018-2872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2872-9

Keywords

Navigation