Skip to main content
Log in

Strong enhancement of the chemiluminescence of the Cu(II)-H2O2 system on addition of carbon nitride quantum dots, and its application to the detection of H2O2 and glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report that carbon nitride quantum dots (CN QDs) exert a strong enhancing effect on the Cu(II)/H2O2 chemiluminescent system. Chemiluminescence (CL) intensity is enhanced by CN QDs by a factor of ~75, while other carbon nanomaterials have a much weaker effect. The possible mechanism of the effect was evaluated by recording fluorescence and CL spectra and by examining the effect of various radical scavengers. Emitting species was found to be excited-state CN QDs that produce green CL peaking at 515 nm. The new CL system was applied to the sensitive detection of H2O2 and glucose (via glucose oxidase-catalyzed formation of H2O2) with detection limits (3σ) of 10 nM for H2O2 and 100 nM for glucose. The probe was employed for glucose determination in human plasma samples with satisfactory results.

The effect of carbon nitride quantum dots (CN QDs) on Cu(II)-H2O2 chemiluminescence reaction was studied and the new CL system was applied for sensitive detection of glucose based on the glucose oxidase (GOx)-catalyzed formation of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bubb KJ, Birgisdottir AB, Tang O et al (2017) Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease. Free Radic Biol Med 109:61–74

    Article  CAS  Google Scholar 

  2. Liu H, Weng L, Yang C (2017) A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Microchim Acta 184:1267–1283

    Article  CAS  Google Scholar 

  3. Chen X, Wu G, Cai Z et al (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705

    Article  CAS  Google Scholar 

  4. Ma Z-Z, H-C Y, Z-Y W et al (2016) A highly sensitive amperometric glucose biosensor based on a nano-cube Cu2O modified glassy carbon electrode. Chin J Anal Chem 44:822–827

    Article  CAS  Google Scholar 

  5. Hu Y, Cheng H, Zhao X et al (2017) Surface-enhanced raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11:5558–5566

    Article  CAS  Google Scholar 

  6. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80:2250–2254

    Article  CAS  Google Scholar 

  7. Guo C, Song Y, Wei H et al (2007) Room temperature ionic liquid doped DNA network immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide. Anal Bioanal Chem 389:527–532

    Article  CAS  Google Scholar 

  8. Lin Z, Chen H, Lin J-M (2013) Peroxide induced ultra-weak chemiluminescence and its application in analytical chemistry. Analyst 138:5182

    Article  CAS  Google Scholar 

  9. Hanaoka S, Lin J-M, Yamada M (2000) Chemiluminescence behavior of the decomposition of hydrogen peroxide catalyzed by copper(II)–amino acid complexes and its application to the determination of tryptophan and phenylalanine. Anal Chim Acta 409:65–73

    Article  CAS  Google Scholar 

  10. Liu M, Li B, Zhang Z, Lin J-M (2005) Enhancing effect of DNA on chemiluminescence from the decomposition of hydrogen peroxide catalyzed by copper(II). Anal Bioanal Chem 381:828–832

    Article  CAS  Google Scholar 

  11. Zhang L, Zhang Z, Lu C, Lin J-M (2012) Improved chemiluminescence in Fenton-like reaction via dodecylbenzene-sulfonate-intercalated layered double hydroxides. J Phys Chem C 116:14711–14716

    Article  CAS  Google Scholar 

  12. Shi J, Lu C, Yan D, Ma L (2013) High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system. Biosens Bioelectron 45:58–64

    Article  CAS  Google Scholar 

  13. Pan F, Wei P, Zhang M, Lu C (2015) Micelle modified-carbon nanosphere enhanced chemiluminescence from reactive oxygen species for the detection of hydrogen peroxide. Anal Methods 7:5667–5673

    Article  CAS  Google Scholar 

  14. Liu J, Wang H, Antonietti M (2016) Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chem Soc Rev 45:2308–2326

    Article  CAS  Google Scholar 

  15. Wang A-J, Li H, Huang H et al (2016) Fluorescent graphene-like carbon nitrides: synthesis, properties and applications. J Mater Chem C 4:8146–8160

    Article  CAS  Google Scholar 

  16. Tang Y, Su Y, Yang N et al (2014) Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem 86:4528–4535

    Article  CAS  Google Scholar 

  17. Fan X, Su Y, Deng D, Lv Y (2016) Carbon nitride quantum dot-based chemiluminescence resonance energy transfer for iodide ion sensing. RSC Adv 6:76890–76896

    Article  CAS  Google Scholar 

  18. Fan X, Feng Y, Su Y et al (2015) A green solid-phase method for preparation of carbon nitride quantum dots and their applications in chemiluminescent dopamine sensing. RSC Adv 5:55158–55164

    Article  CAS  Google Scholar 

  19. Yu H, He Y, Li W, Duan T (2015) Graphitic carbon nitride nanosheets-enhanced chemiluminescence of luminol for sensitive detection of 2,4,6-trinitrotoluene. Sens Actuators B Chem 220:516–521

    Article  CAS  Google Scholar 

  20. Zhou J, Yang Y, Zhang C (2013) A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun 49:8605

    Article  CAS  Google Scholar 

  21. Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH (2014) Direct chemiluminescence of carbon dots induced by potassium ferricyanide and its analytical application. Spectrochim Acta A Mol Biomol Spectrosc 122:715–720

    Article  CAS  Google Scholar 

  22. Amjadi M, Hallaj T, Asadollahi H et al (2017) Facile synthesis of carbon quantum dot/silver nanocomposite and its application for colorimetric detection of methimazole. Sens Actuators B Chem 244:425–432

    Article  CAS  Google Scholar 

  23. Amjadi M, Manzoori JL, Hallaj T, Shahbazsaghir T (2017) Application of the chemiluminescence system composed of silicon-doped carbon dots, iron(II) and K2S2O8 to the determination of norfloxacin. Microchim Acta 184:1587–1593

    Article  CAS  Google Scholar 

  24. Chandra S, Laha D, Pramanik A et al (2016) Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe3+ ions in cancer cells: synthesis of highly fluorescent N and P doped carbon dots. Luminescence 31:81–87

    Article  CAS  Google Scholar 

  25. Amjadi M, Manzoori JL, Hallaj T (2014) Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. J Lumin 153:73–78

    Article  CAS  Google Scholar 

  26. Cui Y, Ding Z, Liu P et al (2012) Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys Chem Chem Phys 14:1455–1462

    Article  CAS  Google Scholar 

  27. Ju E, Dong K, Chen Z et al (2016) Copper(II)-graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew Chem 128:11639–11643

    Article  Google Scholar 

  28. Wang W, Schuchmann MN, Schuchmann H-P et al (1999) Radical cations in the OH-radical-induced oxidation of thiourea and tetramethylthiourea in aqueous solution. J Am Chem Soc 121:238–245

    Article  CAS  Google Scholar 

  29. Hosaka S, Itagaki T, Kuramitsu Y (1999) Selectivity and sensitivity in the measurement of reactive oxygen species (ROS) using chemiluminescent microspheres prepared by the binding of acridinium ester or ABEI to polymer microspheres. Luminescence 14:349–354

    Article  CAS  Google Scholar 

  30. Chen YT, Zheng RL, Jia ZJ, Ju Y (1990) Flavonoids as superoxide scavengers and antioxidants. Free Radic Biol Med 9:19–21

    Article  Google Scholar 

  31. Bagchi D, Garg A, Krohn RL et al (1997) Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 95:179–189

    CAS  Google Scholar 

  32. Shah SNA, Lin L, Zheng Y et al (2017) Redox cycling of iron by carbon dot enhanced chemiluminescence: mechanism of electron–hole induction in carbon dot. Phys Chem Chem Phys 19:21604–21611

    Article  CAS  Google Scholar 

  33. Jiang J, He Y, Li S, Cui H (2012) Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem Commun 48:9634

    Article  CAS  Google Scholar 

  34. Amjadi M, Manzoori JL, Hallaj T (2015) A novel chemiluminescence method for determination of bisphenol abased on the carbon dot-enhanced HCO3 –H2O2 system. J Lumin 158:160–164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Iran National Science Foundation (INSF 95848790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amjadi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1040 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallaj, T., Amjadi, M., Song, Z. et al. Strong enhancement of the chemiluminescence of the Cu(II)-H2O2 system on addition of carbon nitride quantum dots, and its application to the detection of H2O2 and glucose. Microchim Acta 185, 67 (2018). https://doi.org/10.1007/s00604-017-2547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2547-y

Keywords

Navigation