Skip to main content
Log in

Amperometric determination of hydroquinone and catechol using a glassy carbon electrode modified with a porous carbon material doped with an iron species

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A porous carbon material doped with an iron species (Fe/PC) was prepared by carbonizing a mixture of zeolitic imidazolate framework-8 in the presence of iron(II) ions. The resulting material was characterized by X-ray diffraction, nitrogen adsorption isotherms, transmission electron microscopy, and by Raman and X-ray photoelectron spectroscopy. Fe/PC was the deposited on the surface of glassy carbon electrode (GCE) to obtain a sensor for amperometric determination of phenolic compounds. The unique catalytic activity, good electrical conductivity and hierarchical structure of the Fe/PC composite results in good electrooxidative activity towards hydroquinone (HQ; typically at 44 mV) and catechol (CC; typically at 160 mV). Under optimal conditions, the amperometric responses are linear in the range from 0.1 to 120 μmol · L−1 for HQ, and from 1.0 to 120 μmol · L−1 for CC. The respective detection limits are 14 and 33 nmol · L−1. The sensor is highly selective against potential interferents and was successfully applied to the determination of HQ and CC contents in (spiked) water samples.

An amperometric sensor for phenolic compounds was constructed by using a metal-organic framework derived iron doped porous carbon material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhao GH, Li MF, ZH H, Li HX, Cao TC (2006) Electrocatalytic redox of hydroquinone by two forms of L-proline. J Mol Catal A 255:86–91

    Article  CAS  Google Scholar 

  2. Hirakawa K, Oikawa S, Hiraku Y, Hirosawa I, Kawanishi S (2002) Catechol and hydroquinone have different redox properties responsible for their differential DNA-damaging ability. Chem Res Toxicol 15:76–82

    Article  CAS  Google Scholar 

  3. Yao XT, Wen LQ, Rong SY, Ying LQ (2006) Simultaneous determination of positional isomers of benzenediols by capillary zone electrophoresis with square wave amperometric detection. J Chromatogr A 1109:317–321

    Article  Google Scholar 

  4. Wang Y, JH Q, Li SF, Dong Y, JY Q (2015) Simultaneous determination of hydroquinone and catechol using a glassy carbon electrode modified with gold nanoparticles, ZnS/NiS@ZnS quantum dots and L-cysteine. Microchim Acta 182:2277–2283

    Article  CAS  Google Scholar 

  5. Liu LY, Ma Z, Zhu XH, Alshahrani LA, Tie SL, Nan JM (2016) A glassy carbon electrode modified with carbon nano-fragments and bismuth oxide for electrochemical analysis of trace catechol in the presence of high concentrations of hydroquinone. Microchim Acta 183:3293–3301

    Article  CAS  Google Scholar 

  6. Peng J, Feng Y, Han XX, Gao ZN (2016) Simultaneous determination of bisphenol A and hydroquinone using a poly(melamine) coated graphene doped carbon paste electrode. Microchim Acta 183:2289–2296

    Article  CAS  Google Scholar 

  7. Palanisamy S, Ramaraj SK, Chen SM, Velusamy V, Yang TCK, Chen TW (2017) Voltammetric determination of catechol based on a glassy carbon electrode modified with a composite consisting of graphene oxide and polymelamine. Microchim Acta 184:1051–1057

    Article  CAS  Google Scholar 

  8. Huang KJ, Wang L, Li J, Yu M, Liu YM (2013) Electrochemical sensing of catechol using a glassy carbon electrode modified with a composite made from silver nanoparticles, polydopamine, and graphene. Microchim Acta 180:751–757

    Article  CAS  Google Scholar 

  9. Ma XM, Liu ZN, Qiu CC, Chen T, Ma HY (2013) Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite. Microchim Acta 180:461–468

    Article  CAS  Google Scholar 

  10. Aiyappa HB, Pachfule P, Banerjee R, Kurungot S (2013) Porous carbons from nonporous MOFs: influence of ligand characteristics on intrinsic properties of end carbon. Cryst Growth Des 13:4195–4199

    Article  CAS  Google Scholar 

  11. Cheng Q, Ji LD, KB W, Zhang WK (2016) Morphology-dependent electrochemical enhancements of porous carbon as sensitive determination platform for ascorbic acid, dopamine and uric acid. Sci Report 6:22309

    Article  CAS  Google Scholar 

  12. Lim DW, Yoon JW, Ryu KY, Suh MP (2012) Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption. Angew Chem Int Ed 51:9814–9817

    Article  CAS  Google Scholar 

  13. Torad NL, Hu M, Kamachi Y, Takai K, Imura M, Naito M, Yamauchi Y (2013) Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem Commun 49:2521–2523

    Article  CAS  Google Scholar 

  14. Tang HL, Cai SC, Xie SL, Wang ZB, Tong YX, Pan M, XH L (2016) Metal-organic-framework-derived dual metal- and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells. Adv Sci 3:1500265

    Article  Google Scholar 

  15. Wang ZF, Liu YS, Gao CW, Jiang H, Zhang JM (2015) A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. J Mater Chem A 3:20658–20663

    Article  CAS  Google Scholar 

  16. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Férey G, Couvreur P, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178

    Article  CAS  Google Scholar 

  17. Krokidas P, Castier M, Moncho S, Brothers E, Economou IG (2015) Molecular simulation studies of the diffusion of methane, ethane, propane, and propylene in ZIF-8. J Phys Chem C 119:27028–27037

    Article  CAS  Google Scholar 

  18. Karagiaridi O, Lalonde MB, Bury W, Sarjeant AA, Farha OK, Hupp JT (2012) Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J Am Chem Soc 134:18790–18796

    Article  CAS  Google Scholar 

  19. Gualino M, Roques N, BrandèS SP, Arurault L, Sutter JP (2015) From ZIF-8@Al2O3 composites to self-supported ZIF-8 one-dimensional superstructures. Cryst Growth Des 15:3552–3555

    Article  CAS  Google Scholar 

  20. Wang XJ, Zhang HG, Lin HH, Gupta S, Wang C, Tao ZX, Fu H, Wang T, Zheng J, Wu G, Li XG (2016) Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy 25:110–119

    Article  Google Scholar 

  21. Almasoudi A, Mokaya R (2012) Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. J Mater Chem 22:146–152

    Article  CAS  Google Scholar 

  22. Liu T, Zhao PP, Hua X, Luo W, Chen SL, Cheng GZ (2016) An Fe–N–C hybrid electrocatalyst derived from a bimetal–organic framework for efficient oxygen reduction. J Mater Chem A 4:11357–11364

    Article  CAS  Google Scholar 

  23. Wang ZH, Qie L, Yuan LX, Zhang WX, XL H, Huang YH (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334

    Article  CAS  Google Scholar 

  24. Buleandra M, Rabinca AA, Badea IA, Balan A, Stamatin I, Mihailciuc C, Ciucu AA (2017) Voltammetric determination of dihydroxybenzene isomers using a disposable pencil graphite electrode modified with cobalt-phthalocyanine. Microchim Acta 184:1481–1488

    Article  CAS  Google Scholar 

  25. Zhou J, Li X, Yang LL, Yan SL, Wang MM, Cheng D, Chen Q, Dong YL, Liu P, Cai WQ, Zhang CC (2015) The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal Chim Acta 899:57–65

    Article  CAS  Google Scholar 

  26. Fu J, Tan XH, Shi Z, Song XJ, Zhang SH (2016) Highly sensitive and simultaneous detection of hydroquinone and catechol using poly(mercaptoacetic acid)/exfoliated graphene composite film-modified electrode. Electroanalysis 28:203–210

    Article  CAS  Google Scholar 

  27. Ezhil Vilian AT, Chen SM, Huang LH, Ali MA, Al-Hemaid FMA (2014) Simultaneous determination of catechol and hydroquinone using a Pt/ZrO2-RGO/GCE composite modified glassy carbon electrode. Electrochim Acta 125:503–509

    Article  Google Scholar 

  28. Lai T, Cai WH, Dai WL, Ye JS (2014) Easy processing laser reduced graphene: a green and fast sensing platform for hydroquinone and catechol simultaneous determination. Electrochim Acta 138:48–55

    Article  CAS  Google Scholar 

  29. Huang YH, Chen JH, Sun X, ZB S, Xing HT, SR H, Weng W, Guo HX, WB W, He YS (2015) One-pot hydrothermal synthesis carbon nanocages-reduced graphene oxide composites for simultaneous electrochemical detection of catechol and hydroquinone. Sensors Actuators B Chem 212:165–173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21205103, 21275124), Jiangsu Provincial Nature Foundation of China (BK2012258), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Zhang, T., Hu, X. et al. Amperometric determination of hydroquinone and catechol using a glassy carbon electrode modified with a porous carbon material doped with an iron species. Microchim Acta 185, 37 (2018). https://doi.org/10.1007/s00604-017-2538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2538-z

Keywords

Navigation