Electrochemical glycoprotein aptasensors based on the in-situ aggregation of silver nanoparticles induced by 4-mercaptophenylboronic acid


The authors report on an amperometric method for the determination of glycoprotein by using an aptamer as the bioreceptor. The detection scheme is making use of aggregated citrate-capped silver nanoparticles (AgNPs) on a gold electrode. Aggregation is accomplished by addition of 4-mercaptophenylboronic acid (MPBA) which acts as a cross-linker due to the formation of Ag-S bonds and of boronate esters. A thiolated DNA aptamer was then attached to the electrode in order to capture glycoprotein. Once captured, the glycoprotein reacts with MPBA through the formation of boronate esters. The electrochemical signal is thus amplified by the formation of a network of AgNPs which act as redox reporters. To demonstrate the feasibility of the method, prostate specific antigen (PSA) was chosen as a model analyte. The detection limit for PSA is as low as 0.2 pg mL−1. In our preception, this method provides a powerful tool for studying the glycan function in biological and physiological processes.

Schematic of the electrochemical method for the detection of glycoprotein. It is based on 4-mercaptophenylboronic acid (MPBA)-induced in situ formation of citrate-capped silver nanoparticle (AgNP) aggregates as the redox reporters. The MPBA molecules act as the cross-linkers of AgNP assembly based on the formation of Ag-S bonds and on boronate ester covalent interactions.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856

    CAS  Article  Google Scholar 

  2. 2.

    Pihíková D, Kasák P, Tkac J (2015) Glycoprofiling of cancer biomarkers: label-free electrochemical lectin-based biosensors. Open Chem 13:636–655

    Article  Google Scholar 

  3. 3.

    Ang SH, Thevarajah M, Alias Y, Khor S (2015) Current aspects in hemoglobin A1c detection: a review. Clin Chim Acta 439:202–211

    CAS  Article  Google Scholar 

  4. 4.

    Zhang Y, Zhuang Y, Shen H, Chen X, Wang J (2017) A super hydrophilic silsesquioxane-based composite for highly selective adsorption of glycoproteins. Microchim Acta 184:1037–1044

    CAS  Article  Google Scholar 

  5. 5.

    Akiba U, Anzai J (2016) Recent progress in electrochemical biosensors for glycoproteins. Sensors 16:2045

    Article  Google Scholar 

  6. 6.

    Pihikova D, Kasak P, Kubanikova P, Sokol R, Tkac J (2016) Aberrant sialylation of a prostate-specific antigen: electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal Chim Acta 934:72–79

    CAS  Article  Google Scholar 

  7. 7.

    Shah AK, Hill MM, Shiddiky MJA, Trau M (2014) Electrochemical detection of glycan and protein epitopes of glycoproteins in serum. Analyst 139:5970–5976

    CAS  Article  Google Scholar 

  8. 8.

    Zhang JJ, Cheng FF, Zheng TT, Zhu JJ (2017) Versatile aptasensor for electrochemical quantification of cell surface glycan and naked-eye tracking glycolytic inhibition in living cells. Biosens Bioelectron 89:937–945

    CAS  Article  Google Scholar 

  9. 9.

    Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J (2016) Nanotechnology in glycomics: applications in diagnostics, therapy, imaging, and separation processes. Med Res Rev 37:514–626

    Article  Google Scholar 

  10. 10.

    Wang J (2016) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 183:1479–1486

    Article  Google Scholar 

  11. 11.

    Shan J, Ma Z (2017) A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 184:969–979

    CAS  Article  Google Scholar 

  12. 12.

    Xia N, Liu L, Chang Y, Hao Y, Wang X (2017) 4-Mercaptophenylboronic acid-induced in situ formation of silver nanoparticle aggregates as labels on an electrode surface. Electrochem Commun 74:28–32

    CAS  Article  Google Scholar 

  13. 13.

    Xia N, Wang X, Zhou B, Wu Y, Mao W, Liu L (2016) Electrochemical detection of amyloid-β oligomers based on the signal amplification of a network of silver nanoparticles. ACS Appl Mater Interfaces 8:19303–19311

    CAS  Article  Google Scholar 

  14. 14.

    Xu JJ, Zhao WW, Song SP, Fan CH, Chen HY (2014) Functional nanoprobes for ultrasensitive detection of biomolecules: an update. Chem Soc Rev 43:1601–1611

    CAS  Article  Google Scholar 

  15. 15.

    Song W, Li H, Liang H, Qiang W, Xu D (2014) Disposable electrochemical aptasensor array by using in situ DNA hybridization inducing silver nanoparticles aggregate for signal amplification. Anal Chem 86:2775–2783

    CAS  Article  Google Scholar 

  16. 16.

    Wei T, Dong T, Wang Z, Bao J, Tu W, Dai Z (2015) Aggregation of individual sensing units for signal accumulation: conversion of liquid-phase colorimetric assay into enhanced surface-tethered electrochemical analysis. J Am Chem Soc 137:8880–8883

    CAS  Article  Google Scholar 

  17. 17.

    Yang YC, Tseng WL (2016) 1,4-Benzenediboronic-acid-induced aggregation of gold nanoparticles: application to hydrogen peroxide detection and biotin-avidin-mediated immunoassay with naked-eye detection. Anal Chem 88:5355–5362

    CAS  Article  Google Scholar 

  18. 18.

    Anzai J (2016) Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives. Mater Sci Eng C 67:737–746

    CAS  Article  Google Scholar 

  19. 19.

    Li M, Zhu W, Marken F, James TD (2015) Electrochemical sensing using boronic acids. Chem Commun 51:14562–14573

    CAS  Article  Google Scholar 

  20. 20.

    Tan L, Chen K, Huang C, Peng R, Luo X, Yang R, Cheng Y, Tang Y (2015) A fluorescent turn-on detection scheme for α-fetoprotein using quantum dots placed in a boronate-modified molecularly imprinted polymer with high affinity for glycoproteins. Microchim Acta 182:2615–2622

    CAS  Article  Google Scholar 

  21. 21.

    Ma Y, Gao Q, Yang XR (2005) Immobilization of glycosylated enzymes on carbon electrodes, and its application in biosensors. Microchim Acta 150:21–26

    CAS  Article  Google Scholar 

  22. 22.

    Jolly P, Formisano N, Tkáč J, Kasák P, Frost CG, Estrela P (2015) Label-free impedimetric aptasensor with antifouling surfacechemistry: A prostate specific antigen case study. Sensors Actuators B Chem 209:306–312

    CAS  Article  Google Scholar 

  23. 23.

    Shen J, Li Y, Gu H, Xia F, Zuo X (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677

    CAS  Article  Google Scholar 

  24. 24.

    Liu B, Lu LS, Hua EH, Jiang ST, Xie GM (2012) Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchim Acta 178:163–170

    CAS  Article  Google Scholar 

  25. 25.

    Salimi A, Kavosi B, Fathi F, Hallaj R (2013) Highly sensitive immunosensing of prostate-specific antigen based on ionic liquidecarbon nanotubes modified electrode: application as cancer biomarker for prostatebiopsies. Biosens Bioelectron 42:439–446

    CAS  Article  Google Scholar 

  26. 26.

    Yang J, Wen W, Zhang X, Wang S (2015) Electrochemical immunosensor for the prostate specific antigen detection based on carbon nanotube and gold nanoparticle amplification strategy. Microchim Acta 182:1855–1861

    CAS  Article  Google Scholar 

  27. 27.

    Wang Y, Qu Y, Liu G, Hou X, Huang Y, Wu W, Wu K, Li C (2015) Electrochemical immunoassay for the prostate specific antigen using a reduced graphene oxide functionalized with a high molecular-weight silk peptide. Microchim Acta 182:2061–2067

    CAS  Article  Google Scholar 

  28. 28.

    Zhao J, Guo Z, Feng D, Guo J, Wang J, Zhang Y (2015) Simultaneous electrochemical immunosensing of alpha-fetoprotein and prostate specific antigen using a glassy carbon electrode modified with gold nanoparticle-coated silica nanospheres and decorated with azure a or ferrocenecarboxylic acid. Microchim Acta 182:2435–2442

    CAS  Article  Google Scholar 

  29. 29.

    Rahi A, Sattarahmady N, Heli H (2016) Label-free electrochemical aptasensing of the human prostate-specific antigen using gold nanospears. Talanta 156-157:218–224

    CAS  Article  Google Scholar 

  30. 30.

    Zhu Y, Wang H, Wang L, Zhu J, Jiang W (2016) Cascade signal amplification based on copper nanoparticle-reported rolling circle amplification for ultrasensitive electrochemical detection of the prostate cancer biomarker. ACS Appl Mater Interfaces 8:2573–2581

    CAS  Article  Google Scholar 

  31. 31.

    Jiao L, Mu Z, Miao L, Du W, Wei Q, Li H (2017) Enhanced amperometric immunoassay for the prostate specific antigen using Pt-cu hierarchical trigonal bipyramid nanoframes as a label. Microchim Acta 184:423–429

    CAS  Article  Google Scholar 

  32. 32.

    Li Y, Han J, Chen R, Ren X, Wei Q (2015) Label electrochemical immunosensor for prostate-specific antigen based on graphene and silver hybridized mesoporous silica. Anal Biochem 469:76–82

    CAS  Article  Google Scholar 

  33. 33.

    Yang Z, Kasprzyk-Hordern B, Goggins S, Frost CG, Estrela P (2015) A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. Analyst 140:2628–2633

    CAS  Article  Google Scholar 

  34. 34.

    Jolly P, Tamboli V, Harniman RL, Estrela P, Allender CJ, Bowen JL (2016) Aptamer–MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens Bioelectron 75:188–195

    CAS  Article  Google Scholar 

  35. 35.

    Qu B, Guo L, Chu X, Wu D-H, Shen G-L, Yu R-Q (2010) An electrochemical immunosensor based on enzyme-encapsulated liposomes and biocatalytic metal deposition. Anal Chim Acta 663:147–152

    CAS  Article  Google Scholar 

Download references


We acknowledge financial support of the National Natural Science Foundation of China (21205003, 21305004), the Joint Fund for Fostering Talents of National Natural Science Foundation of China and Henan Province (U1304205), the Program for Science and Technology Innovation Talents at the University of Henan Province (18HASTIT005) and the Science & Technology Foundation of Henan Province (17A150001).

Author information



Corresponding author

Correspondence to Lin Liu.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material


(DOC 3053 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, N., Cheng, C., Liu, L. et al. Electrochemical glycoprotein aptasensors based on the in-situ aggregation of silver nanoparticles induced by 4-mercaptophenylboronic acid. Microchim Acta 184, 4393–4400 (2017). https://doi.org/10.1007/s00604-017-2488-5

Download citation


  • Electrochemical biosensor
  • Glycoprotein
  • Silver nanoparticles
  • Boronic acid
  • Prostate specific antigen
  • Aptamer
  • Signal amplification
  • Boronate esters