Skip to main content
Log in

Chitosan stabilized gold nanoparticle based electrochemical ractopamine immunoassay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemical immunoassay for the β-adrenergic agonist ractopamine (RAC). It is based on the use of chitosan-stabilized gold nanoparticles (chit-AuNPs). Antibodies against RAC (anti-RAC) readily adsorb on the surface of the chit-AuNPs due to their high bio-affinity. The amount of chitosan used to synthesize chit-AuNPs does not affect the size and distribution of the NPs but amplifies the electrochemical signal of the electrode. The assay has a detection limit as low as 2.3 pg∙mL−1 (equivalent to a 6.7 fM concentration), with a response that is linear in the 0.01 to 5 ng∙mL−1 RAC concentration range. The assay is selective, acceptably reproducible, stable, and well applicable to the detection of RAC.

Chitosan-stabilized gold nanoparticles (chit-AuNPs) were prepared for electrochemical immunoassay of the ractopamine (RAC). The assay exhibits a detection limit of 2.3 pg·mL−1 (equal to 6.7 fM), is highly selective, acceptably reproducible, and stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shishani EI, Chai SC, Jamokha S, Aznar G, Hoffman MK (2003) Determination of ractopamine in animal tissues by liquid chromatography-fluorescence and liquid chromatography/tandem mass spectrometry. Anal Chim Acta 483:137–145

    Article  CAS  Google Scholar 

  2. Yao X, Yan P, Tang Q, Deng A, Li J (2013) Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification for ultrasensitive detection of clenbuterol. Anal Chim Acta 798:82–88

    Article  CAS  Google Scholar 

  3. Li AP, Peng H, Peng JD, Zhou MQ, Zhang J (2015) Rayleigh light scattering detection of three α1-adrenoceptor antagonists coupled with high performance liquid chromatograph. Spectrochim Acta A 147:178–184

    Article  CAS  Google Scholar 

  4. Domínguez-Romero JC, García-Reyes JF, Martínez-Romero R, Martínez-Lara E, Del Moral-Leal ML, Molina-Díaz A (2013) Detection of main urinary metabolites of β2-agonists clenbuterol, salbutamol and terbutaline by liquid chromatography high resolution mass spectrometry. J Chromatogr B 923–924:128–135

    Article  Google Scholar 

  5. He L, Su Y, Zeng Z, Liu Y, Huang X (2007) Determination of ractopamine and clenbuterol in feeds by gas chromatography–mass spectrometry. Anim Feed Sci Technol 132:316–323

    Article  CAS  Google Scholar 

  6. Tang Q, Cai F, Deng A, Li J (2015) Ultrasensitive competitive electrochemiluminescence immunoassay for the β-adrenergic agonist phenylethanolamine a using quantum dots and enzymatic amplification. Microchim Acta 182:139–147

    Article  CAS  Google Scholar 

  7. Parlak O, İncel A, Uzun L, Turner APF, Tiwari A (2017) Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosens Bioelectron 89, Part 1:545–550

  8. Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2:18–29

    Article  Google Scholar 

  9. Afonso AS, Pérez-López B, Faria RC, Mattoso LHC, Hernández-Herrero M, Roig-Sagués AX, Maltez-da Costa M, Merkoçi A (2013) Electrochemical detection of salmonella using gold nanoparticles. Biosens Bioelectron 40:121–126

    Article  CAS  Google Scholar 

  10. Lapin ZJ, Bharadwaj P, Novotny L, Höppener C (2012) Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. Phys Rev Lett 109:17402

    Article  Google Scholar 

  11. Gutiérrez-Sánchez C, Pita M, Vaz-Domínguez C, Shleev S, De Lacey AL (2012) Gold nanoparticles as electronic bridges for laccase-based Biocathodes. J Am Chem Soc 134:17212–17220

    Article  Google Scholar 

  12. Suvith VS, Philip D (2014) Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim Acta A 118:526–532

    Article  CAS  Google Scholar 

  13. Zhang X, Sun Z, Cui Z, Li H (2014) Ionic liquid functionalized gold nanoparticles: synthesis, rapid colorimetric detection of imidacloprid. Sensors Actuators B-Chem 191:313–319

    Article  CAS  Google Scholar 

  14. Kim T, Lee K, Gong M, Joo S (2005) Control of gold nanoparticle aggregates by manipulation of Interparticle interaction. Langmuir 21:9524–9528

    Article  CAS  Google Scholar 

  15. Yu D, Zeng Y, Qi Y, Zhou T, Shi G (2012) A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite. Biosens Bioelectron 38:270–277

    Article  CAS  Google Scholar 

  16. Wang L, Hua E, Liang M, Ma C, Liu Z, Sheng S, Liu M, Xie G, Feng W (2014) Graphene sheets, polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Biosens Bioelectron 51:201–207

    Article  CAS  Google Scholar 

  17. Jiang L, Qian J, Yang X, Yan Y, Liu Q, Wang K, Wang K (2014) Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A. Anal Chim Acta 806:128–135

    Article  CAS  Google Scholar 

  18. Fei A, Liu Q, Huan J, Qian J, Dong X, Qiu B, Mao H, Wang K (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129

    Article  CAS  Google Scholar 

  19. Shi J, Chan C, Pang Y, Ye W, Tian F, Lyu J, Zhang Y, Yang M (2015) A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron 67:595–600

    Article  CAS  Google Scholar 

  20. Wang Y, Wang X, Geng Z, Xiong Y, Wu W, Chen Y (2015) Electrodeposition of a carbon dots/chitosan composite produced by a simple in situ method and electrically controlled release of carbon dots. J Mater Chem B 3:7511–7517

    Article  CAS  Google Scholar 

  21. Ma H, Sun J, Zhang Y, Bian C, Xia S, Zhen T (2016) Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize. Biosens Bioelectron 80:222–229

    Article  CAS  Google Scholar 

  22. Zhao J, Shaygan M, Eckert J, Meyyappan M, Rümmeli MH (2014) A growth mechanism for free-standing vertical graphene. Nano Lett 14:3064–3071

    Article  CAS  Google Scholar 

  23. Hui W, Xu C (2013) Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology 24:455401

    Article  Google Scholar 

  24. Hernández S, Pellegrino P, Martínez A, Lebour Y, Garrido B, Spano R, Cazzanelli MN, Daldosso L, Pavesi EJ, Fedeli JM, Pavesi EJAJ (2008) Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition. J Appl Phys 103:64309

    Article  Google Scholar 

  25. Zhou Q, Zhao Z, Wang Z, Dong Y, Wang X, Gogotsi Y, Qiu J (2014) Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage. Nano 6:2286–2291

    CAS  Google Scholar 

  26. Jin Y, Li Z, Hu L, Shi X, Guan W, Du Y (2013) Synthesis of chitosan-stabilized gold nanoparticles by atmospheric plasma. Carbohydr Polym 91:152–156

    Article  CAS  Google Scholar 

  27. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  CAS  Google Scholar 

  28. Zhang N, Qiu H, Liu Y, Wang W, Li Y, Wang X, Gao J (2011) Fabrication of gold nanoparticle/graphene oxide nanocomposites and their excellent catalytic performance. J Mater Chem 21:11080–11083

    Article  CAS  Google Scholar 

  29. Yao T, Gu X, Li T, Li J, Li J, Zhao Z, Wang J, Qin Y, She Y (2016) Enhancement of surface plasmon resonance signals using a MIP/GNPs/rGO nano-hybrid film for the rapid detection of ractopamine. Biosens Bioelectron 75:96–100

    Article  CAS  Google Scholar 

  30. Gao H, Han J, Yang S, Wang Z, Wang L, Fu Z (2014) Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol. Anal Chim Acta 839:91–96

    Article  CAS  Google Scholar 

  31. Zhou Y, Wang P, Su X, Zhao H, He Y (2013) Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe. Talanta 112:20–25

    Article  CAS  Google Scholar 

  32. Chen S, Pan D, Gan N, Wang D, Zhu Y, Li T, Cao Y, Hu F, Jiang S (2015) A QCM immunosensor to rapidly detect ractopamine using bio-polymer conjugate and magnetic β-cyclodextrins. Sensors Actuators B-Chem 211:523–530

    Article  CAS  Google Scholar 

  33. Chen S, Zhang J, Gan N, Hu F, Li T, Cao Y, Pan D (2015) An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchim Acta 182:815–822

    Article  CAS  Google Scholar 

  34. Wang P, Su X, Shi L, Yuan Y (2016) An aptamer based assay for the β-adrenergic agonist ractopamine based on aggregation of gold nanoparticles in combination with a molecularly imprinted polymer. Microchim Acta 183:2899–2905

    Article  CAS  Google Scholar 

  35. Liu H, Fang G, Wang S (2014) Molecularly imprinted optosensing material based on hydrophobic CdSe quantum dots via a reverse microemulsion for specific recognition of ractopamine. Biosens Bioelectron 55:127–132

    Article  CAS  Google Scholar 

  36. Yang F, Wang P, Wang R, Zhou Y, Su X, He Y, Shi L, Yao D (2016) Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Biosens Bioelectron 77:347–352

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Programs for the National Natural Science Foundation of China (NSFC: Account No. U1604127 and 21601161) and Innovative Technology Team of Henan Province (CXTD2014042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihong Zhang or Chun-Sen Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 32899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Guo, C., Song, Y. et al. Chitosan stabilized gold nanoparticle based electrochemical ractopamine immunoassay. Microchim Acta 184, 2919–2924 (2017). https://doi.org/10.1007/s00604-017-2315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2315-z

Keywords

Navigation