Skip to main content
Log in

Ultrasensitive electrochemiluminescent salbutamol immunoassay with dual-signal amplification using CdSe@SiO2 as label and gold nanoparticles as substrate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope

Abstract

The authors describe a dual signal amplification electrochemiluminescent (ECL) immunoassay for ultrasensitive determination of the β-adrenergic agonist salbutamol (SAL). It is based on the use of gold nanoparticles (AuNPs) and silica-coated quantum dots of the type CdSe@SiO2. The CdSe@SiO2 nanoparticles (NPs) were synthesized by water-in-oil reversed-phase microemulsion. Amino-modified NPs were then prepared and used as an ECL signal probe for detection of SAL in the presence of K2S2O8. The gold NPs with their large specific surface carry the antigen, facilitate electron transfer and improve the electrochemical reaction efficiency of QDs and K2S2O8. The ECL immunosensor was fabricated by coating the AuNPs with antigen, and then SAL competed with SAL antigen for the binding sites of the antibody on the CdSe@SiO2 NPs. Under optimized conditions, the ECL intensity is linearly related to the logarithm of the SAL concentration in the range from 0.001 to 1000 ng mL−1, with a lower detection limit of 0.17 pg mL−1 (at an S/N ratio of 3). The assay has good operational stability, is highly sensitive and selective. It is judged to possess a wider scope in that it may be applied to many other small molecule analytes for which adequate antibodies are available.

Schematic of a dual signal amplification electrochemiluminescent immunoassay for ultrasensitive detection of the β-adrenergic agonist salbutamol based on the use of gold nanoparticles and CdSe@SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ong HX, Traini D, Ballerin G, Morgan L, Buddle L, Scalia S, Young PM (2014) Combined inhaled salbutamol and Mannitol therapy for mucus hyper-secretion in pulmonary diseases. The AAPS J 16:269–280

    Article  CAS  Google Scholar 

  2. Uhlig C, Silva PL, Ornellas D, Santos RS, Miranda PJ, Spieth PM, Kiss T, Kasper M, Wiedemann B, Koch T, Morales MM, Pelosi P, Abreu MG, Rocco PR (2014) The effects of salbutamol on epithelial ion channels depend on the etiology of acute respiratory distress syndrome but not theroute of administration. Respir Res 15:56–67

    Article  Google Scholar 

  3. Zhou Y, Wang PL, Su XO, Zhao H, He YJ (2013) Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe. Talanta 112:20–25

    Article  CAS  Google Scholar 

  4. Li TT, Cao JJ, Li Z, Wang X, He PL (2016) Broad screening and identification of β-agonists in feed and animal body fluid and tissues using ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry combined with spectra library search. Food Chem 192:188–196

    Article  CAS  Google Scholar 

  5. Wang JP, Shen JZ (2007) Immunoaffinity chromatography for purification of salbutamol and clenbuterol followed screening and confirmation by ELISA and GC-MS. Food AgricImmunol 18:107–115

    CAS  Google Scholar 

  6. Wang L, Li YQ, Zhou WK, Yang Y (2010) Determination of four β2-agonists in meat, liver and kidney by GC-MS with dual internal standards. Chromatographia 71:737–739

    Article  CAS  Google Scholar 

  7. Wu JW, Ding CG, Ge QH, Li Z, Zhou Z, Zhi XJ (2011) Simultaneous determination of ipratropium and salbutamol in rat plasma by LC–MS/MS and its application to a pharmacokinetic study. J Chromatogr B 879:3475–3483

    Article  CAS  Google Scholar 

  8. Mazhar S, Chrystyn H (2009) New HPLC assay for urinary salbutamol concentrations in samples collected post-inhalation. J Pharm Biomed Anal 50:175–182

    Article  CAS  Google Scholar 

  9. Eenoo PV, Delbeke FT (2002) Detection of inhaled salbutamol in equine urine by ELISA and GC/MS-MS. Biomed Chromatogr 16:513–516

    Article  Google Scholar 

  10. Sirichai S, Khanatharana P (2008) Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in pharmaceuticals and human urine by capillary electrophoresis. Talanta 76:1194–1198

    Article  CAS  Google Scholar 

  11. Deng SY, Ju HX (2013) Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 138:43–61

    Article  CAS  Google Scholar 

  12. Lv XH, Pang XH, Li YY, Yan T, Cao W, Du B, Wei Q (2015) Electrochemiluminescent immune-modified electrodes based on Ag2Se@CdSe Nanoneedles loaded with polypyrrole intercalated Graphene for detection of CA7-4. ACS Appl Mater Interfaces 7:867–872

    Article  CAS  Google Scholar 

  13. Liu ZY, Qi WJ, Xu GB (2015) Recent advances in electrochemiluminescence. Chem Soc Rev 44:3117–3142

    Article  CAS  Google Scholar 

  14. Richter MM (2004) Electrochemiluminescence(ECL). Chem Rev 104:3003–3036

    Article  CAS  Google Scholar 

  15. Yang CY, Shi K, Dou BT, Xiang Y, Chai YQ, Yuan R (2015) In situ DNA-Templated synthesis of silver Nanoclusters for ultrasensitive and label-free electrochemical detection of MicroRNA. ACS Appl Mater Interfaces 7:1188–1193

    Article  CAS  Google Scholar 

  16. Wu XY, Chai YQ, Zhang P, Yuan R (2015) An electrochemical biosensor for sensitive detection of MicroRNA-155: combining target recycling with Cascade catalysis for signal amplification. ACS Appl Mater Interfaces 7:713–720

    Article  CAS  Google Scholar 

  17. Muzyka K (2014) Current trends in the development of the electrochemiluminescentImmunosensors. Biosens Bioelectron 54:393–407

    Article  CAS  Google Scholar 

  18. Karakoti AS, Shukla R, Shanker R, Singh S (2015) Surface functionalization of quantum dots for biological applications. Adv Colloid Interf Sci 215:28–45

    Article  CAS  Google Scholar 

  19. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro andin vivo fluorescence imaging biosensors. Chem Soc Rev 44:4792–4834

    Article  CAS  Google Scholar 

  20. Tsoi KM, Dai Q, Alman BA, Chan WCW (2013) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 46:662–671

    Article  CAS  Google Scholar 

  21. Hoshino A, Hanada S, Yamamoto K (2011) Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol 85:707–720

    Article  CAS  Google Scholar 

  22. Wang YC, Hu R, Lin GM, Roy I, Yong KT (2013) Functionalized quantum dots for Biosensing and Bioimaging and concerns on toxicity. ACS Appl Mater Interfaces 5:2786–2799

    Article  CAS  Google Scholar 

  23. Wei W, Zhou J, Li HN, Yin LH, Pu YP, Liu SQ (2013) Fabrication of CdTe@SiO2 nanoprobes for sensitive electrogenerated chemiluminescence detection of DNA damage. Analyst 138:3253–3258

    Article  CAS  Google Scholar 

  24. Li J, Wang L, Zhao K, Li D, Li JH, Bai YB, Li TJ (2005) Preparation of CdTe nanocrystals and CdTe/SiO2 nanocomposites in glycol. Colloids Surf A Physicochem Eng Asp 257-258:329–332

    Article  CAS  Google Scholar 

  25. Zhang Y, Liu WY, Ge SG, Yan M, Wang SW, Yu JH, Li NQ, Song XR (2013) Multiplexed sandwich immunoassays using flow-injection electrochemiluminescence with designed substrate spatial-resolved technique for detection of tumor markers. Biosens Bioelectron 41:684–690

    Article  CAS  Google Scholar 

  26. Li D, Liu XM, Xie GH, Liu XY (2013) Stable and water-soluble CdTe@SiO2 composite nanospheres: preparation, characterization and application in LED. Colloids Surf A Physicochem Eng Asp 424:33–39

    Article  CAS  Google Scholar 

  27. Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127:4990–4991

    Article  CAS  Google Scholar 

  28. Xia H, Li LL, Yin ZY, Hou XD, Zhu JJ (2015) Biobar-coded gold nanoparticles and DNAzyme-based dual signal amplification strategy for ultrasensitive detection of protein by electrochemiluminescence. ACS Appl Mater Interfaces 7:696–703

    Article  CAS  Google Scholar 

  29. Cao JT, Wang H, Liu YM (2015) Petal-like CdS nanospheres-based electrochemiluminescence aptasensor for detection of IgE with gold nanoparticles amplification. Spectrochim Acta Part A 151:274–279

    Article  CAS  Google Scholar 

  30. Dong TT, Tang QH, Chen M, Deng AP, Li JG (2016) Ultrasensitive electrochemiluminescent competitive immunoassay for β-adrenergic agonist salbutamol based on quantum dots and enzymatic amplification. J Electrochem Soc 163(3):B62–B67

    Article  CAS  Google Scholar 

  31. Tang QH, Cai FD, Deng AP, Li JG (2015) Ultrasensitive competitive electrochemiluminescence immunoassay for the β-adrenergic agonist phenylethanolamine a using quantum dots and enzymatic amplification. Microchim Acta 182:139–147

    Article  CAS  Google Scholar 

  32. Yang YH, Gao MY (2005) Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv Mater 17:2354–2357

    Article  CAS  Google Scholar 

  33. Jing LH, Yang CH, Qiao RR, Niu M, Du MH, Wang DY, Gao MY (2010) Highly fluorescent CdTe@SiO2 particles prepared via reverse microemulsion method. Chem Mater 22:420–427

    Article  CAS  Google Scholar 

  34. Li D, Jia HJ, Fodjo EK, Xu H, Kong C, Wang YH (2015) Highly sensitive “turn-on” fluorescence probe for the detection of sparfloxacin in human serum using silica-functionalized CdTe quantum dots. RSC Adv 5:99454–99460

    Article  CAS  Google Scholar 

  35. Zhang J, Cai FD, Deng AP, Li JG (2014) CdSe quantum dots based electrochemiluminescence immunosensor with simple structure for ultrasensitive detection of salbutamol. Electroanal 26:1–9

    Article  Google Scholar 

  36. Xu MX, Qian XL, Zhao K, Deng AP, Li JG (2015) Flow injection chemiluminescent competitive immunoassay for the β-adrenergic agonist salbutamol using carboxylic resin beads andenzymatic amplification. Sensors Actuators B Chem 215:323–329

    Article  CAS  Google Scholar 

  37. Cao BY, He GZ, Yang H, Chang HF, Li SQ, Deng AP (2013) Development of a highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) for the detection of phenylethanolamine a in tissue and feed samples and confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Talanta 115:624–630

    Article  CAS  Google Scholar 

  38. Islam S, Bidin N, Riaz S, Naseem S, Marsin FM (2016) Correlation between structural and optical properties of surfactant assisted sol-gel based mesoporous SiO2-TiO2 hybrid nanoparticles for pH sensing/optochemical sensor. Sensors Actuators B Chem 225:66–73

    Article  CAS  Google Scholar 

  39. Dong WJ, Cheng Y, Luo L, Li XY, Wang L, Li CG, Wang LF (2014) Synthesis and self-assembly of hierarchical SiO2–QDs@SiO2 nanostructures and their photoluminescence applications for finger print detection and cell imaging. RSC Adv 4:45939–45945

    Article  CAS  Google Scholar 

  40. Ramanavicius A, Finkelsteinas A, Cesiulis H, Ramanaviciene A (2010) Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor. Bioelectrochem 79:11–16

    Article  CAS  Google Scholar 

  41. Zhang J, Cai FD, Deng AP, Li JG (2014) CdSe quantum dots based electrochemiluminescence immunosensor with simple structure for ultrasensitive detection of salbutamol. Electroanalysis 26:1–9

    Article  Google Scholar 

  42. Ganjali MR, Sepehri A, Daftari A, Norouzi P, Pirelahi H, Moradzadegan A (2005) Determination of salbutamol, amikacin and paromomycin sulfate by a novel sulfate polymeric membrane sensor based on 2,6-diphenyl-4-(4-methoxyphenyl)pyrylium perchlorate. Microchim Acta 149(3–4):245–249

    Article  CAS  Google Scholar 

  43. Cai FD, Wang N, Dong TT, Deng AP, Li JG (2015) Dual-signal amplified electrochemiluminescence immunoassay for salbutamol based on quantum dots and gold nanoparticle-labeled horseradish peroxidase. Analyst 140:5885–5890

    Article  CAS  Google Scholar 

  44. Yan PP, Tang QH, Deng AP, Li JG (2014) Ultrasensitive detection of clenbuterol by quantum dots based electrochemiluminescent immunosensor using gold nanoparticles as substrate and electron transport accelerator. Sensors Actuators B Chem 191:508–515

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Science Fund from the National Natural Science Foundation of China (No. 21075087, No. 21175097), the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201207), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anping Deng or Jianguo Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 3.14 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, T., Tang, Q., Zhao, K. et al. Ultrasensitive electrochemiluminescent salbutamol immunoassay with dual-signal amplification using CdSe@SiO2 as label and gold nanoparticles as substrate. Microchim Acta 184, 961–968 (2017). https://doi.org/10.1007/s00604-017-2081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2081-y

Keywords

Navigation