Skip to main content
Log in

SERS detection and characterization of uranyl ion sorption on  silver nanorods wrapped with Al2O3 layers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Aligned silver nanorods wrapped with Al2O3 layers about 0.85, 1.54 nm thickness were utilized to study the SERS response and adsorption behavior of uranyl ion. Relatively broad and asymmetric SERS bands were observed due to the contribution of several hydrolyzed uranyl complexes and multiple coordination between uranyl complexes and SERS substrates. The mechanism of sorption on SERS substrates is discussed. The effect of the pH value of sample solutions was also studied. Results show that the Al2O3 layers enhance the stability of silver nanorod. It is found that the Al2O3 layer is consumed in acidic or basic solutions, while the SERS performance of silver nanord is maintained. Uranyl ion can be quantified by this method in concentration down to 10−9 M.

Schematic of an AgNR@Al2O3 substrate prepared by oblique angle deposition (OAD) and atomic layer deposition (ALD) techniques in order to study the SERS response of uranyl species. It shows an excellent sensitivity with a detectable concentration down to 1 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nelson AW (2015) Understanding the radioactive ingrowth and decay of naturally occurring radioactive Materials in the environment: an analysis of produced fluids from the Marcellus shale. Environ Health Perspect 123(7):689–696

    Google Scholar 

  2. Inoue T (2002) Actinide recycling by pyro-process with metal fuel FBR for future nuclear fuel cycle system. Prog Nucl Energy 40(3–4):547–554

    Article  CAS  Google Scholar 

  3. Yun W, Jiang J, Cai D, Wang X, Sang G, Liao J, Lu T, Yan K (2016) Ultrasensitive electrochemical detection of UO2 2+ based on DNAzyme and isothermal enzyme-free amplification. RSC Adv 6(5):3960–3966

    Article  CAS  Google Scholar 

  4. Bidoglio G, Parma L, Grenthe I (1995) Characterisation of hydroxide complexes of uranium(VI) by time-resolved fluorescence spectroscopy. J Chem Soc Faraday Trans 91(15):2275–2285

    Article  Google Scholar 

  5. Nguyen-Trung C, Begun GM, Palmer DA (1992) Aqueous uranium complexes. 2. Raman spectroscopic study of the complex formation of the dioxouranium(VI) ion with a variety of inorganic and organic ligands. Inorg Chem 31(25):5280–5287

    Article  CAS  Google Scholar 

  6. Nguyen-Trung C, Palmer DA, Begun GM, Peiffert C, Mesmer RE (2000) Aqueous uranyl complexes 1. Raman spectroscopic study of the hydrolysis of uranyl(VI) in solutions of Trifluoromethanesulfonic acid and/or Tetramethylammonium hydroxide at 25 °C and 0.1 MPa. J Solut Chem 29(2):101–129

    Article  CAS  Google Scholar 

  7. Xu M, Frelon S, Simon O, Lobinski R, Mounicou S (2014) Development of a non-denaturing 2D gel electrophoresis protocol for screening in vivo uranium-protein targets in Procambarus clarkii with laser ablation ICP MS followed by protein identification by HPLC–Orbitrap MS. Talanta 128:187–195

    Article  CAS  Google Scholar 

  8. Abbasi SA (1989) Atomic absorption spectrometric and spectrophotometric trace analysis of uranium in environmental samples with N-p-MEthoxyphenyl-2-Furylacrylohydroxamic acid and 4-(2-Pyridylazo) resorcinol. Int J Environ Anal Chem 36(3):163–172

    Article  CAS  Google Scholar 

  9. Dejeant A, Bourva L, Sia R, Galoisy L, Calas G, Phrommavanh V, Descostes M (2014) Field analyses of 238 U and 226 Ra in two uranium mill tailings piles from Niger using portable HPGe detector. J Environ Radioact 137:105–112

    Article  CAS  Google Scholar 

  10. Rowland CE, Kanatzidis MG, Soderholm L (2012) Tetraalkylammonium uranyl isothiocyanates. Inorg Chem 51(21):11798–11804

    Article  CAS  Google Scholar 

  11. Jiang J, Wang S, Wu H, Zhang J, Li H, Jia J, Wang X, Liao J (2015) Facile and rapid fabrication of large-scale silver nanoparticles arrays with high SERS performance. RSC Adv 5:105820–105824

    Article  CAS  Google Scholar 

  12. Cialla D, Pollok S, Steinbrücker C, Weber K, Popp J (2016) SERS-based detection of biomolecules. Nano 3(6):383–411

    Google Scholar 

  13. Bontempi N (2016) Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces. Nano 8(6):3226–3231

    CAS  Google Scholar 

  14. Ma L, Huang Y, Hou M, Li J, Zhang Z (2016) Pinhole effect on the melting behavior of ag@Al2 O3 SERS substrates. Nanoscale Res Lett 11(1):1–7

  15. Dai S, Lee YH, Yong JP (1996) Observation of the surface-enhanced Raman scattering Spectrum of uranyl ion. Appl Spectrosc 50(4):536–537

    Article  CAS  Google Scholar 

  16. Bao L, Mahurin SM, Haire RG, Dai S (2003) Silver-doped sol-gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions. Anal Chem 75(23):6614–6620

    Article  CAS  Google Scholar 

  17. Bhandari D, Wells SM, Retterer ST, Sepaniak MJ (2009) Characterization and detection of uranyl ion sorption on silver surfaces using surface enhanced Raman spectroscopy. Anal Chem 81(19):8061–8067

    Article  CAS  Google Scholar 

  18. Tsushima S, Nagasaki S, Tanaka S, Suzuki A (1998) A Raman spectroscopic study of uranyl species adsorbed onto colloidal particles. J Phys Chem B 102(45):9029–9032

    Article  CAS  Google Scholar 

  19. Leverette CL, Villa-Aleman E, Jokela S, Zhang Z, Liu Y, Zhao Y, Smith SA (2009) Trace detection and differentiation of uranyl(VI) ion cast films utilizing aligned ag nanorod SERS substrates. Vib Spectrosc 50(1):143–151

    Article  CAS  Google Scholar 

  20. Ruan C, Luo W, Wang W, Gu B (2007) Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples. Anal Chim Acta 605(1):80–86

    Article  CAS  Google Scholar 

  21. Dutta S, Ray C, Sarkar S, Pradhan M, Negishi Y, Pal T (2013) Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion. ACS Appl Mater Interfaces 5(17):8724–8732

    Article  CAS  Google Scholar 

  22. Ma L, Huang Y, Hou M, Zheng X, Zhang Z (2015) Silver Nanorods wrapped with ultrathin Al2O3 layers exhibiting excellent SERS sensitivity and outstanding SERS stability. Sci Rep 5:12890–12899

  23. Burneau A, Teiten B (1999) Surface-enhanced Raman spectra of both uranyl VI and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol in silver colloids. Vib Spectrosc 21:97–109

    Article  CAS  Google Scholar 

  24. Toth LM, Friedman HA, Begun GM, Dorris SE (1984) Raman study of uranyl ion attachment to thorium (IV) hydrous polymer. J Phys Chem 88(23):5574–5577

    Article  CAS  Google Scholar 

  25. Davies RV, Kennedy J, Peckett JWA, Robinson BK, Streeton RJW, Davies RV, Kennedy J, Peckett JWA, Robinson BK, Streeton RJW (1965) Extraction of uranium from sea water. Part II. Extraction by organic and inorganic absorbers. Atomic Energy Research Establishment, Harwell

    Google Scholar 

  26. Jiang J, Wang S, Zhang J, Haoxi WU, Jia J, Wang X, Liao J (2016) Self-assembly of gold nanoparticles and their application in SERS (in Chinese). Mater Rev 30(4):77–80

    CAS  Google Scholar 

  27. Jiang Z, Yao D, Wen G, Li T, Chen B, Liang A (2012) A label-free Nanogold DNAzyme-cleaved surface-enhanced resonance Raman scattering method for trace UO2 2+ using rhodamine 6G as probe. Plasmonics 8(2):803–810

    Article  Google Scholar 

  28. Lu G, Forbes TZ, Haes AJ (2016) SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size. Analyst 141(17):5137–5143

    Article  CAS  Google Scholar 

  29. Liang Y, He Y (2016) Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion. Microchim Acta 183(1):407–413

    Article  CAS  Google Scholar 

  30. Zhou B, Wang YS, Yang HX, Xue JH, Wang JC, Liu SD, Liu H, Zhao H (2014) A sensitive resonance light scattering assay for uranyl ion based on the conformational change of a nuclease-resistant aptamer and gold nanoparticles acting as signal reporters. Microchim Acta 181(11):1353–1360

    Article  CAS  Google Scholar 

  31. Ozdemir S (2012) Geobacillus thermoleovorans immobilized on Amberlite XAD-4 resin as a biosorbent for solid phase extraction of uranium (VI) prior to its spectrophotometric determination. Microchim Acta 178(3):389–397

    Article  CAS  Google Scholar 

  32. Yun W, Cai D, Jiang J, Wang X, Liao J, Zhang P, Sang G (2016) An ultrasensitive electrochemical biosensor for uranyl detection based on DNAzyme and target-catalyzed hairpin assembly. Microchim Acta 183(4):1425–1432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the funds of China Academy of Engineering Physics (TCSQ2016203), Radiochemical Discipline 909 Funds by China Academy of Engineering Physics (no. XK909-2), and the Natural Science Foundation of China (no. 21501157).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengjun Zhang or Junsheng Liao.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Ma, L., Chen, J. et al. SERS detection and characterization of uranyl ion sorption on  silver nanorods wrapped with Al2O3 layers. Microchim Acta 184, 2775–2782 (2017). https://doi.org/10.1007/s00604-017-2286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2286-0

Keywords

Navigation