Skip to main content

Advertisement

Log in

Binary nanocomposite based on Co3O4 nanocubes and multiwalled carbon nanotubes as an ultrasensitive platform for amperometric determination of dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Composites containing cobalt oxide (Co3O4) nanocubes integrated with multiwall carbon nanotubes (MWCNT) were synthesized by a hydrothermal route. The fractions of MWCNTs in the composite were varied from 4, 8, 12, 16 and 20 wt.%, and the resulting materials are denoted as C1, C2, C3, C4 and C5, respectively. The formation of products with high structural crystallinity was confirmed by X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray diffraction. A morphological study by field emission scanning electron microscopy and high resolution transmission electron microscopy showed the successful integration of Co3O4 nanocubes to the MWCNTs with an average particle size of ∼32 nm. The surface of a glassy carbon electrode (GCE) was modified with the nanocomposites in order to evaluate the electrochemical performance of the nanocomposites. Cyclic voltammetry showed that the C4-modified GCE displays best performance in terms of oxidation potential and peak current in comparison to that of a bare GCE, Co3O4 nanocubes, or GCEs modified with C1, C2, C3 or C5. The detection limit (at an S/N ratio of 3) is 0.176 nM by using chronoamperometry, and the linear range is between 1 and 20 μM.

MWCNT-Co3O4 nanocubes were synthesized by one pot hydrothermal route. The nanocomposite is used for electrochemical detection of dopamine. The limit of detection is found to be 176 nM by chronoamperometry at a constant potential of + 0.13 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aurora R, Kristo D, Bista S, Rowley J (2012) Zak RS; Casey KR; Lamm CI; Tracy SL; Rosenberg RS. The treatment of restless legs syndrome and periodic limb movement disorder in adults—an update for 2012: practice parameters with an evidence-based systematic review and meta-analyses. Sleep 35(8):1039–1062

    Article  Google Scholar 

  2. Obata T (2002) Dopamine efflux by MPTP and hydroxyl radical generation. J Neural Transm 109(9):1159–1180

    Article  CAS  Google Scholar 

  3. Ensafi AA, Taei M, Khayamian T (2009) A differential pulse voltammetric method for simultaneous determination of ascorbic acid, dopamine, and uric acid using poly (3-(5-chloro-2-hydroxyphenylazo)-4, 5-dihydroxynaphthalene-2, 7-disulfonic acid) film modified glassy carbon electrode. J Electroanal Chem 633(1):212–220

    Article  CAS  Google Scholar 

  4. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60(13):769A–793A

    Article  CAS  Google Scholar 

  5. Holdiness MR, Rosen MT, Justice JB, Neill DB (1980) Gas chromatographic-mass spectrometric determination of dopamine in subregions of rat brain. J Chromatogr A 198(3):329–336

    Article  CAS  Google Scholar 

  6. Deftereos NT, Calokerinos AC, Efstathiou CE (1993) Flow injection chemiluminometric determination of epinephrine, norepinephrine, dopamine and L-dopa. Analyst 118(6):627–632

    Article  CAS  Google Scholar 

  7. Kaya M, Mr V (2012) New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid. Anal Chem 84(18):7729–7735

    Article  CAS  Google Scholar 

  8. Zhou Y, Yan H, Xie Q, Huang S, Liu J, Li Z, Ma M, Yao S (2013) Simultaneous analysis of dopamine and homovanillic acid by high-performance liquid chromatography with wall-jet/thin-layer electrochemical detection. Analyst 138(23):7246–7253

    Article  CAS  Google Scholar 

  9. Mamiński M, Olejniczak M, Chudy M, Dybko A, Brzózka Z (2005) Spectrophotometric determination of dopamine in microliter scale using microfluidic system based on polymeric technology. Anal Chim Acta 540(1):153–157

    Article  Google Scholar 

  10. Watson CJ, Venton BJ, Kennedy RT (2006) In vivo measurements of neurotransmitters by microdialysis sampling. Anal Chem 78(5):1391–1399

    Article  Google Scholar 

  11. Abdelwahab AA, Shim Y-B (2015) Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded au nanoclusters. Sensors Actuators B Chem 221:659–665

    Article  CAS  Google Scholar 

  12. Omar FS, Duraisamy N, Ramesh K, Ramesh S (2016) Conducting polymer and its composite materials based electrochemical sensor for nicotinamide adenine dinucleotide (NADH). Biosens Bioelectron 79:763–775

    Article  CAS  Google Scholar 

  13. Nazemi Z, Shams E, Amini MK (2010) Covalent modification of glassy carbon electrode by Nile blue: Preparation, electrochemistry and electrocatalysis. Electrochim Acta 55(24):7246–7253

    Article  CAS  Google Scholar 

  14. Palanisamy S, Thangavelu K, Chen S-M, Gnanaprakasam P, Velusamy V, Liu X-H (2016) Preparation of chitosan grafted graphite composite for sensitive detection of dopamine in biological samples. Carbohydr Polym 151:401–407

  15. Liu Y, She P, Gong J, Wu W, Xu S, Li J, Zhao K, Deng A (2015) A novel sensor based on electrodeposited au–Pt bimetallic nano-clusters decorated on graphene oxide (GO)–electrochemically reduced GO for sensitive detection of dopamine and uric acid. Sensors Actuators B Chem 221:1542–1553

    Article  CAS  Google Scholar 

  16. Palanisamy S, Ku S, Chen S-M (2013) Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim Acta 180(11–12):1037–1042

    Article  CAS  Google Scholar 

  17. Fernandes DM, Costa M, Pereira C, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A, Freire C (2014) Novel electrochemical sensor based on N-doped carbon nanotubes and Fe 3 O 4 nanoparticles: simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. J Colloid Interface Sci 432:207–213

    Article  CAS  Google Scholar 

  18. Pandikumar A, How GTS, See TP, Omar FS, Jayabal S, Kamali KZ, Yusoff N, Jamil A, Ramaraj R, John SA (2014) Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv 4(108):63296–63323

    Article  CAS  Google Scholar 

  19. Moro F, Tang SVY, Tuna F, Lester E (2013) Magnetic properties of cobalt oxide nanoparticles synthesised by a continuous hydrothermal method. J Magn Magn Mater 348:1–7

    Article  CAS  Google Scholar 

  20. Xie X, Li Y, Liu Z-Q, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458(7239):746–749

    Article  CAS  Google Scholar 

  21. Mu J, Zhang L, Zhao M, Wang Y (2013) Co 3 O 4 nanoparticles as an efficient catalase mimic: properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J Mol Catal A Chem 378:30–37

    Article  CAS  Google Scholar 

  22. Shahid MM, Pandikumar A, Golsheikh AM, Huang NM, Lim HN (2014) Enhanced electrocatalytic performance of cobalt oxide nanocubes incorporating reduced graphene oxide as a modified platinum electrode for methanol oxidation. RSC Adv 4(107):62793–62801

    Article  CAS  Google Scholar 

  23. Numan A, Duraisamy N, Omar FS, Mahipal Y, Ramesh K, Ramesh S (2016) Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application. RSC Adv 6(41):34894–34902

    Article  CAS  Google Scholar 

  24. Numan A, Shahid MM, Omar FS, Ramesh K, Ramesh S (2017) Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sensors Actuators B Chem 238:1043–1051

    Article  CAS  Google Scholar 

  25. Bathinapatla A, Kanchi S, Singh P, Sabela MI, Bisetty K (2015) Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame. Biosens Bioelectron 67:200–207

    Article  CAS  Google Scholar 

  26. Lu L-M, Zhang X-B, Shen G-L, Yu R-Q (2012) Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors. Anal Chim Acta 715:99–104

    Article  CAS  Google Scholar 

  27. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1–2):1–41

    Article  CAS  Google Scholar 

  28. Yang Y, Zhang H, Huang C, Jia N (2016) MWCNTs-PEI composites-based electrochemical sensor for sensitive detection of bisphenol a. Sensors Actuators B Chem 235:408–413

    Article  CAS  Google Scholar 

  29. Qiu X, Lu L, Leng J, Yu Y, Wang W, Jiang M, Bai L (2016) An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of sunset yellow and Tartrazine. Food Chem 190:889–895

    Article  CAS  Google Scholar 

  30. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840t

    Article  CAS  Google Scholar 

  31. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, 2nd ed., John Wiley and Sons, New York

  32. Panwar V, Al-Nafiey A, Addad A, Sieber B, Roussel P, Boukherroub R, Jain SL (2015) Magnetic co 3 O 4/reduced graphene oxide nanocomposite as a superior heterogeneous catalyst for one-pot oxidative esterification of aldehydes to methyl esters. RSC Adv 5(108):88567–88573

    Article  CAS  Google Scholar 

  33. Abouali S, Akbari Garakani M, Zhang B, Xu Z-L, Kamali Heidari E, J-q H, Huang J, Kim J-K (2015) Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl Mater Interfaces 7(24):13503–13511

    Article  CAS  Google Scholar 

  34. Tan Y, Gao Q, Li Z, Tian W, Qian W, Yang C, Zhang H (2016) Unique 1D Co3O4 crystallized nanofibers with (220) oriented facets as high-performance lithium ion battery anode material. Sci Rep 6:26460. doi:10.1038/srep26460

  35. Tan Y, Gao Q, Yang C, Yang K, Tian W, Zhu L (2015) One-dimensional porous nanofibers of Co3O4 on the carbon matrix from human hair with superior lithium ion storage performance. Sci Rep 55:12382. doi:10.1038/srep12382

  36. Huang H, Zhu W, Tao X, Xia Y, Yu Z, Fang J, Gan Y, Zhang W (2012) Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl Mater Interfaces 4(11):5974–5980

    Article  CAS  Google Scholar 

  37. Xiong S, Chen JS, Lou XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@ C Topotactically transformed from chrysanthemum-like CO (CO3) 0.5 (OH)· 0.11 H2O and their lithium-storage properties. Adv Funct Mater 22(4):861–871

    Article  CAS  Google Scholar 

  38. Li B, Xie Y, Wu C, Li Z, Zhang J (2006) Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures. Mater Chem Phys 99(2):479–486

    Article  CAS  Google Scholar 

  39. Shahid MM, Rameshkumar P, Pandikumar A, Lim HN, Ng YH, Huang NM (2015) An electrochemical sensing platform based on a reduced graphene oxide–cobalt oxide nanocube@ platinum nanocomposite for nitric oxide detection. J Mater Chem A 3(27):14458–14468

    Article  CAS  Google Scholar 

  40. How GTS, Pandikumar A, Ming HN, Ngee LH (2014) Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Scientific Reports 4:5044. doi:10.1038/srep05044. http://www.nature.com/articles/srep05044#supplementary-information

    Google Scholar 

  41. Jayabal S, Ramaraj R (2013) Synthesis of core/shell au/ag nanorods embedded in functionalized silicate sol–gel matrix and their applications in electrochemical sensors. Electrochim Acta 88:51–58

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the High Impact Research Grant (H-21001-F000046), Fundamental Research Grant Scheme (FP012-2015A) from Ministry of Education, Malaysia and Postgraduate Research Grant (PG119-2015A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arshid Numan or S. Ramesh.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 3353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Numan, A., Shahid, M.M., Omar, F.S. et al. Binary nanocomposite based on Co3O4 nanocubes and multiwalled carbon nanotubes as an ultrasensitive platform for amperometric determination of dopamine. Microchim Acta 184, 2739–2748 (2017). https://doi.org/10.1007/s00604-017-2269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2269-1

Keywords

Navigation