Skip to main content
Log in

Folate-conjugated pH-controllable fluorescent nanomicelles acting as tumor targetable drug carriers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe biocompatible nanomicelle based drug carriers that can be used for simultaneous (a) fluorescence tracking, (b) pH-controlled release of the cancer drug doxorubicin (DOX), and (c) targeting the folate receptor. The pH-sensitive triblock copolymer is composed of poly-2-(diisopropylamino) ethyl methacrylate and methoxypoly (ethylene glycol) which were prepared by radical polymerization and ‘click’ chemistry. The copolymers undergo self-assembly to form spherical micelles with diameters between 100 and 200 nm and a pH-trigger capability at pH values from 5.8 to 6.2. The micelles enabled DOX to be released at pH 5.0 at a much higher rate than at pH 7.4. Studies on cellular uptake revealed selective internalization of the DOX-loaded nanomicelles into HeLa cells where they can be imaged fluorometrically. Quantitative analysis of the green fluorescence indicated that the FITC-labeled micelles possess a transfection efficiency of about 79% while that of the nanomicellles with folate is only ∼40% under the same conditions. Confocal laser scanning microscopy indicates that the micelles invade the lysosome of HeLa cells and that the DOX released by micelles causes strong cell lethality. In our preception, this work provides useful insights in terms of designing multifunctional drug carriers and of improving the applicability of copolymer micelles for drug delivery systems.

Schematic of the preparation of multi-functional nanomicelles through self-assembly of amphipathic polymers. The micelles act as tumor targeting and pH-controllable drug carriers. FITC/FA/P100-M can invade the lysosome of HeLa cells and release DOX inside cells, this leading to strongt cell lethality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Kelley EG, Albert JN, Sullivan MO, Epps TH 3rd (2013) Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem Soc Rev 42(17):7057–7071

    Article  CAS  Google Scholar 

  2. Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182(9–10):1567–1589

    Article  CAS  Google Scholar 

  3. Huang P, Wang D, Su Y, Huang W, Zhou Y, Cui D, Zhu X, Yan D (2014) Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J Am Chem Soc 136(33):11748–11756

    Article  CAS  Google Scholar 

  4. Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S (2015) An implantable active-targeting micelle-in-Nanofiber device for efficient and safe cancer therapy. ACS Nano 9(2):1161–1174

    Article  CAS  Google Scholar 

  5. Qian J, Sullivan BP, Berkland C (2015) pH-responsive micelle Sequestrant polymers inhibit fat absorption. Biomacromolecules 16(8):2340–2346

    Article  CAS  Google Scholar 

  6. Xu J, Zeng F, Wu H, Hu C, Wu S (2014) Enhanced photodynamic efficiency achieved via a dual-targeted strategy based on photosensitizer/micelle structure. Biomacromolecules 15(11):4249–4259

    Article  CAS  Google Scholar 

  7. Ding M, Zeng X, He X, Li J, Tan H, Fu Q (2014) Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery. Biomacromolecules 15(8):2896–2906

    Article  CAS  Google Scholar 

  8. Ling D, Park W, Park SJ, Lu Y, Kim KS, Hackett MJ, Kim BH, Yim H, Jeon YS, Na K, Hyeon T (2014) Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc 136(15):5647–5655

    Article  CAS  Google Scholar 

  9. Shao Y, Shi C, Xu G, Guo D, Luo J (2014) Photo and redox dual responsive reversibly cross-linked nanocarrier for efficient tumor-targeted drug delivery. ACS Appl Mater Interfaces 6(13):10381–10392

    Article  CAS  Google Scholar 

  10. Rakshit S, Saha R, Pal SK (2013) Modulation of environmental dynamics at the active site and activity of an enzyme under nanoscopic confinement: subtilisin Carlsberg in anionic AOT reverse micelle. J Phys Chem B 117(39):11565–11574

    Article  CAS  Google Scholar 

  11. Guo X, Li D, Yang G, Shi C, Tang Z, Wang J, Zhou S (2014) Thermo-triggered drug release from actively targeting polymer micelles. ACS Appl Mater Interfaces 6(11):8549–8559

    Article  CAS  Google Scholar 

  12. Ribeiro-Viana R, Garcia-Vallejo JJ, Collado D, Perez-Inestrosa E, Bloem K, van Kooyk Y, Rojo J (2012) BODIPY-labeled DC-SIGN-targeting glycodendrons efficiently internalize and route to lysosomes in human dendritic cells. Biomacromolecules 13(10):3209–3219

    Article  CAS  Google Scholar 

  13. Fan J, Zeng F, Wu S, Wang X (2012) Polymer micelle with pH-triggered hydrophobic-hydrophilic transition and de-cross-linking process in the core and its application for targeted anticancer drug delivery. Biomacromolecules 13(12):4126–4137

    Article  CAS  Google Scholar 

  14. Shi Y, van Nostrum CF, Hennink WE (2015) Interfacially Hydrazone cross-linked Thermosensitive polymeric micelles for acid-triggered release of paclitaxel. ACS Biomater Sci Eng 1(6):393–404

    Article  CAS  Google Scholar 

  15. Zhou K, Wang Y, Huang X, Luby-Phelps K, Sumer BD, Gao J (2011) Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chem Int Ed 50(27):6109–6114

    Article  CAS  Google Scholar 

  16. Du J, Fan L, Liu Q (2012) pH-sensitive block copolymer vesicles with variable trigger points for drug delivery. Macromolecules 45(20):8275–8283

    Article  CAS  Google Scholar 

  17. Su Y, Xie Z, Kim GB, Dong C, Yang J (2015) Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater Sci Eng 1(4):201–217

    Article  CAS  Google Scholar 

  18. Dong H, Lund R, Xu T (2015) Micelle stabilization via entropic repulsion: balance of force directionality and geometric packing of subunit. Biomacromolecules 16(3):743–747

    Article  CAS  Google Scholar 

  19. Logie J, Owen SC, McLaughlin CK, Shoichet MS (2014) PEG-graft density controls polymeric nanoparticle micelle stability. Chem Mater 26(9):2847–2855

    Article  CAS  Google Scholar 

  20. Wang J, Yin T, Huang F, Song Y, An Y, Zhang Z, Shi L (2015) Artificial chaperones based on mixed shell polymeric micelles: insight into the mechanism of the interaction of the chaperone with substrate proteins using Forster resonance energy transfer. ACS Appl Mater Interfaces 7(19):10238–10249

    Article  CAS  Google Scholar 

  21. Panja S, Dey G, Bharti R, Kumari K, Maiti TK, Mandal M, Chattopadhyay S (2016) Tailor-made temperature-sensitive micelle for targeted and on-demand release of anticancer drugs. ACS Appl Mater Interfaces 8(19):12063–12074

    Article  CAS  Google Scholar 

  22. Zhang Y, Liu JM, Yan XP (2013) Self-assembly of folate onto polyethyleneimine-coated CdS/ZnS quantum dots for targeted turn-on fluorescence imaging of folate receptor overexpressed cancer cells. Anal Chem 85(1):228–234

    Article  CAS  Google Scholar 

  23. Zhang Y, Sun Y, Xu X, Zhang X, Zhu H, Huang L, Qi Y, Shen Y-M (2010) Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)−folic acid conjugates. J Med Chem 53(8):3262–3272

    Article  CAS  Google Scholar 

  24. Li J, Yang H, Zhang Y, Jiang X, Guo Y, An S, Ma H, He X, Jiang C (2015) Choline derivate-modified doxorubicin loaded micelle for Glioma therapy. ACS Appl Mater Interfaces 7(38):21589–21601

    Article  CAS  Google Scholar 

  25. Gao Y, Li Y, Yuan L, Zhou Y, Li J, Zhao L, Zhang C, Li X, Liu Y (2015) PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking. Nano 7(2):597–612

    CAS  Google Scholar 

  26. Roggers RA, Lin VS, Trewyn BG (2012) Chemically reducible lipid bilayer coated mesoporous silica nanoparticles demonstrating controlled release and HeLa and normal mouse liver cell biocompatibility and cellular internalization. Mol Pharm 9(9):2770–2777

    Article  CAS  Google Scholar 

  27. Li J, Zhou Z, Ma L, Chen G, Li Q (2014) Hierarchical assembly of amphiphilic POSS-Cyclodextrin molecules and azobenzene end-capped polymers. Macromolecules 47(16):5739–5748

    Article  CAS  Google Scholar 

  28. Chen RT, Marchesan S, Evans RA, Styan KE, Such GK, Postma A, McLean KM, Muir BW, Caruso F (2012) Photoinitiated alkyne-azide click and radical cross-linking reactions for the patterning of PEG hydrogels. Biomacromolecules 13(3):889–895

    Article  CAS  Google Scholar 

  29. Fang J, Ye SH, Wang J, Zhao T, Mo X, Wagner WR (2015) Thiol click modification of cyclic disulfide containing biodegradable polyurethane urea elastomers. Biomacromolecules 16(5):1622–1633

    Article  CAS  Google Scholar 

  30. Liu X, Chen B, Li X, Zhang L, Xu Y, Liu Z, Cheng Z, Zhu X (2015) Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug controlled delivery and fluorescence imaging applications. Nano 7(39):16399–16416

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Natural Science Foundation of China (No. 21276074), National Natural Science Foundation of China for Innovative Research Groups (No. 51621002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junqi Zhang or Shouhong Xu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Weiju Hao and Tong Wang equally contributed to this work.

Electronic supplementary material

ESM 1

(DOCX 1404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, W., Wang, T., Liu, D. et al. Folate-conjugated pH-controllable fluorescent nanomicelles acting as tumor targetable drug carriers. Microchim Acta 184, 2881–2891 (2017). https://doi.org/10.1007/s00604-017-2255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2255-7

Keywords

Navigation