Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322
CAS
Article
Google Scholar
Page CC, Moser CC, Chen XX, Dutton PL (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402:47–52
CAS
Article
Google Scholar
Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26(5):492–500
CAS
Article
Google Scholar
Heller A, Hellman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108(7):2482–2505
CAS
Article
Google Scholar
Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Annals NY. Acad Sci 102:29–45
CAS
Article
Google Scholar
Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214(5092):986–988
CAS
Article
Google Scholar
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
CAS
Article
Google Scholar
Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191
CAS
Article
Google Scholar
Guiseppi-Elie A, Lei C-H, Baughman RH (2002) Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13(5):559–564
CAS
Article
Google Scholar
Shan CS, Yang HF, Song JF, Han DX, Ari-Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382
CAS
Article
Google Scholar
Katz E, Sheeney-Haj-Ichia L, Willner I (2004) Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. Angew Chem Int Ed 43:3292–3300
CAS
Article
Google Scholar
Holland JT, Lau C, Brozik S, Atanassov P, Banta S (2011) Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. J Am Chem Soc 133:19262–19265
CAS
Article
Google Scholar
Bai Y-F, Xu T-B, Luong JHT, Cui H-F (2014) Direct electron transfer of glucose oxidase-boron doped diamond interface: a new solution for a classical problem. Anal Chem 86(10):4910–4918
CAS
Article
Google Scholar
Wooten M, Karra S, Zhang M, Gorski W (2014) On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal Chem 86(1):752–757
CAS
Article
Google Scholar
Liang B, Guo X-H, Fang L, Hu Y-C, Yang G, Zhu Q, Wei J-W, Ye X-S (2015) Study of direct electron transfer and enzyme activity of glucose oxidase on graphene surface. Electrochem Commun 50:1–5
Article
CAS
Google Scholar
Hale JM (1968) The potential-dependence and the upper limits of electrochemical rate constants. J Electroanal Chem 19:315–318
CAS
Article
Google Scholar
Chidsey CED (1991) Free-energy and temperature-dependence of electron-transfer at the metal-electrolyte interface. Science 251:919–922
CAS
Article
Google Scholar
Heering HA, Hirst J, Armstrong FA (1998) Interpreting the catalytic voltammetry of electroactive enzymes adsorbed on electrodes. J Phys Chem B 102:6889–690219
CAS
Article
Google Scholar
Honeychurch MJ (1998) Effect of the interfacial potential distribution on the measurement of the rate constant for electron transfer between electrodes and redox adsorbates. Langmuir 14(21):6291–6296
DeVault D (1984) Quantum mechanical tunneling in biological systems, 2nd edn. Cambridge Univ. Press, Cambridge
Google Scholar
Moser CC, Duton PL (2003) Mechanism for electron transfer within and between proteins. Curr Opin Chem Biol 7:551–556
Article
CAS
Google Scholar
Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802
CAS
Article
Google Scholar
Farid RS, Moser CC, Dutton PL (1993) Electron transfer in proteins. Curr Opin Struct Biol 3:225–233
CAS
Article
Google Scholar
Gray HB, Winkler JR (1996) Electron transfer in proteins. Annu Rev Biochem 65:537–561
CAS
Article
Google Scholar
Wohlfahrt G, Witt S, Hendle J, Schomberg D, Kalisz HM, Hecht H-J (1999) 1.8 and 1.9 Å resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes. Acta Crystallogr D Biol Crystallogr 55:969–977
Langen R, Chang I-J, Germanas JP, Richards JH, Winkler JR, Gray HB (1995) Electron tunneling in proteins: coupling through a β strand. Science 268:1733–1735
CAS
Article
Google Scholar
Muller D (1928) Studies on enzyme glucoseoxydase. Biochemist 199:136–170
CAS
Google Scholar
Courjean O, Gao F, Mano N (2009) Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chem Int Ed Eng 48(32):5897–5899
CAS
Article
Google Scholar
Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8(6):423–488
CAS
Article
Google Scholar
Witt S, Singh M, Kalisz HM (1998) Structural and kinetic properties of nonglycosylated recombinant Penicillium amagasakiense glucose oxidase expressed in Escherichia coli. Appl Environ Microbiol 64(4):1405–1411
CAS
Google Scholar
Nakamura K, Aizawa M, Miyawaki O (1988) Electro-enzymology: coenzyme regeneration. Sringer-Verlag, Berlin
Book
Google Scholar
Gibson QH, Swoboda BE, Massey V (1964) Kinetics and mechanism of action of glucose oxidase. J Biol Chem 239(11):3927–3934
CAS
Google Scholar
Tao Z-M, Raffel RA, Souid A-K, Goodisman J (2009) Kinetic studies on enzyme-catalyzed reactions: oxidation of glucose. Biophys J 96:2977–2988
CAS
Article
Google Scholar
Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28
CAS
Article
Google Scholar
Xiao Y, Patolsky F, Katz E, Hainfeld JH, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by gold nanoparticles. Science 299:1877–1881
CAS
Article
Google Scholar
Kumar-Krishnan S, Hernandez-Rangel A, Pal U, Ceballos-Sanchez O, Flores-Ruiz FJ, Prokhorov E, Arias De Fuentes O, Esparza R, Meyyappan M (2016) Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. J Mater Chem B 4(15):2553–2560
CAS
Article
Google Scholar
Hidaka H, Nowaki K, Muguruma H (2016) Mechanism of amperometric biosensor with electronic-type-controlled carbon nanotube. Japn J Appl Phys 55(3):03DF01
Article
CAS
Google Scholar
Song Y, Lu X, Li Y, Guo Q, Chen S, Mao L, Hou H, Wang L (2016) Nitrogen-doped carbon nanotubes supported by macroporous carbon as an efficient enzymatic biosensing platform for glucose. Anal Chem 88(2):1371–1377
CAS
Article
Google Scholar
Amatatongchai M, Sroysee W, Chairam S, Nacapricha D (2015) Amperometric flow injection analysis of glucose using immobilized glucose oxidase on nanocomposite carbon nanotubes-platinum nanoparticles carbon paste electrode. Talanta (in press). doi:10.1016/j.talanta.2015.11.072
Hu H, Feng M, Zhan H (2015) A glucose biosensor based on partially unzipped carbon nanotubes. Talanta 141:66–72
CAS
Article
Google Scholar
Liu Y, Dolidze TD, Singhal S, Khoshtariya DE, Wei J (2015) New evidence for a quasi-simultaneous proton-coupled two-electron transfer and direct wiring for glucose oxidase captured by the carbon nanotube-polymer matrix. J Phys Chem C 119(27):14900–14910
CAS
Article
Google Scholar
Zhang W, Du Y, Wang ML (2015) On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase. Sens BioSens Res 4:96–102
Google Scholar
Zhao R, Liu X, Zhang J, Zhu J, Wong DKY (2015) Enhancing direct electron transfer of glucose oxidase using a gold nanoparticle titanate nanotube nanocomposite on a biosensor. Electrochim Acta 163:64–70
CAS
Article
Google Scholar
Ayato Y, Suganuma T, Seta H, Yamagiwa K, Shiroishi H, Kuwano J (2015) Synthesis and application of carbon nanotubes to glucose biofuel cell with glucose oxidase and p-benzoquinone. J Electrochem Soc 162(14):F1482–F1486
CAS
Article
Google Scholar
Chen H-C, Tu Y-M, Hou C-C, Lin Y-C, Chen C-H, Yang K-H (2015) Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative. Anal Chim Acta 867:83–91
CAS
Article
Google Scholar
Muguruma H, Hoshino T, Nowaki K (2015) Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase. ACS Appl Mater Interfaces 7(1):584–592
CAS
Article
Google Scholar
Hyun K, Han SW, Koh W-G, Kwon Y (2015) Direct electrochemistry of glucose oxidase immobilized on carbon nanotube for improving glucose sensing. Int J Hydrog Energy 40(5):2199–2206
CAS
Article
Google Scholar
Tang W, Li L, Wu L, Gong J, Zeng X (2014) Glucose biosensor based on a glassy carbon electrode modified with polythionine and multiwalled carbon nanotubes. PLoS One 9(5):e95030
Article
CAS
Google Scholar
Xu X, Yu J, Qian J, Cui D, Liu S (2014) Functionalization of nitrogen-doped carbon nanotubes by 1-pyrenebutyric acid and its application for biosensing. IEEE Sensors J 14(7):2341–2346
CAS
Article
Google Scholar
Palanisamy S, Cheemalapati S, Chen S-M (2014) Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite. Mater Sci Eng C 34(1):207–213
CAS
Article
Google Scholar
TermehYousefi A, Bagheri S, Kadri NA, Mahmood MR, Ikeda S (2014) Constant glucose biosensor based on vertically aligned carbon nanotube composites. Int J Electrochem Sci 10(5):4183–4192
Google Scholar
Khodadadei F, Ghourchian H, Soltanieh M, Hosseinalipour M, Mortazavi Y (2014) Rapid and clean amine functionalization of carbon nanotubes in a dielectric barrier discharge reactor for biosensor development. Electrochim Acta 115:378–385
CAS
Article
Google Scholar
Baghayeri M, Veisi H, Veisi H, Maleki B, Karimi-Maleh H, Beitollahi H (2014) Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Adv 4(91):49595–49604
CAS
Article
Google Scholar
Kang X-H, Wang J, Wu H-X, Lin Y-H (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25(4):901–905
CAS
Article
Google Scholar
Mascagni DBT, Miyazaki CM, da Cruz NC, de Moraes ML, Riul A Jr, Ferreira M (2016) Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection. Mater Sci Eng C 68(1):739–745
CAS
Article
Google Scholar
Rafighi P, Tavahodi M, Haghighi B (2016) Fabrication of a third-generation glucose biosensor using graphene-polyethyleneimine-gold nanoparticles hybrid. Sensors Actuators B Chem 232:454–461
CAS
Article
Google Scholar
Li Z, Sheng L, Meng A, Xie C, Zhao K (2016) A glassy carbon electrode modified with a composite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles in a chitosan matrix for studying the direct electron transfer of glucose oxidase and for enzymatic sensing of glucose. Microchim Acta 183(5):1625–1632
CAS
Article
Google Scholar
Liu Y, Zhang X, He D, Ma F, Fu Q, Hu Y (2016) An amperometric glucose biosensor based on a MnO2/graphene composite modified electrode. RSC Adv 6(22):18654–18661
CAS
Article
Google Scholar
Thirumalraj B, Palanisamy S, Chen S-M, Yang C-Y, Periakaruppan P, Lou B-S (2015) Direct electrochemistry of glucose oxidase and sensing of glucose at a glassy carbon electrode modified with a reduced graphene oxide/fullerene-C60 composite. RSC Adv 5(95):77651–77657
CAS
Article
Google Scholar
Ye Y, Ding S, Ye Y, Xu H, Cao X, Liu S, Sun H (2015) Enzyme-based sensing of glucose using a glassy carbon electrode modified with a one-pot synthesized nanocomposite consisting of chitosan, reduced graphene oxide and gold nanoparticles. Microchim Acta 182(9–10):1783–1789
CAS
Article
Google Scholar
Palanisamy S, Devasenathipathy R, Chen S-M, Ajmal Ali M, Karuppiah C, Balakumar V, Prakash P, Elshikh MS, Al-Hemaid FMA (2015) Direct electrochemistry of glucose oxidase at reduced graphene oxide and β-cyclodextrin composite modified electrode and application for glucose biosensing. Electroanalysis 27(10):2412–2420
CAS
Article
Google Scholar
Xia L, Xia J, Wang Z (2015) Direct electrochemical deposition of polyaniline nanowire array on reduced graphene oxide modified graphite electrode for direct electron transfer biocatalysis. RSC Adv 5(113):93209–93214
CAS
Article
Google Scholar
Shi Y, Li X, Ye M, Hu C, Shao H, Qu L (2015) An imperata cylindrical flowers-shaped porous graphene microelectrode for direct electrochemistry of glucose oxidase. J Electrochem Soc 162(7):B138–B144
CAS
Article
Google Scholar
Yang Z, Cao Y, Li J, Jian Z, Zhang Y, Hu X (2015) Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing. Anal Chim Acta 871:35–42
CAS
Article
Google Scholar
Mani V, Devasenathipathy R, Chen S-M, Subramani B, Govindasamy M (2015) A novel glucose biosensor at glucose oxidase immobilized graphene and bismuth nanocomposite film modified electrode. Int J Electrochem Sci 10(1):691–700
Google Scholar
Guo J, Zhang T, Hu C, Fu L (2015) A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors. Nanoscale 7(4):1290–1295
CAS
Article
Google Scholar
Bai X, Shiu K-K (2015) Spontaneous deposition of Prussian blue on reduced graphene oxide-gold nanoparticles composites for the fabrication of electrochemical biosensors. Electroanalysis 27(1):74–83
CAS
Article
Google Scholar
Sehat AA, Khodadadi AA, Shemirani F, Mortazavi Y (2015) Fast immobilization of glucose oxidase on graphene oxide for highly sensitive glucose biosensor fabrication. Int J Electrochem Sci 10(1):272–286
Google Scholar
Mani V, Devasenathipathy R, Chen S-M, Huang S-T, Vasantha VS (2014) Immobilization of glucose oxidase on graphene and cobalt phthalocyanine composite and its application for the determination of glucose. Enzym Microb Technol 66:60–66
CAS
Article
Google Scholar
Martins MVA, Pereira AR, Luz RAS, Iost RM, Crespilho FN (2014) Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes. Phys Chem Chem Phys 16(33):17426–17436
Karuppiah C, Palanisamy S, Chen S-M, Veeramani V, Periakaruppan P (2014) A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sensors Actuators B Chem 196:450–456
CAS
Article
Google Scholar
Bai X, Shiu K-K (2014) Investigation of the optimal weight contents of reduced graphene oxide-gold nanoparticles composites and theirs application in electrochemical biosensors. J Electroanal Chem /721:84–91
Article
CAS
Google Scholar
Piao Y, Han DJ, Seo TS (2014) Highly conductive graphite nanoparticle based enzyme biosensor for electrochemical glucose detection. Sensors Actuators B Chem 194:454–459
CAS
Article
Google Scholar
Wang Y, Li H, Kong J (2014) Facile preparation of mesocellular graphene foam for direct glucose oxidase electrochemistry and sensitive glucose sensing. Sensors Actuators B Chem 193:708–714
CAS
Article
Google Scholar
Zhang X, Liao Q, Chu M, Liu S, Zhang Y (2014) Structure effect on graphene-modified enzyme electrode glucose sensors. Biosens Bioelectron 52:281–287
CAS
Article
Google Scholar
Palanisamy S, Karuppiah C, Chen S-M (2014) Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode. Colloids Surf B: Biointerfaces 114:164–169
CAS
Article
Google Scholar
Vilian ATE, Chen S-M, Ali MA, Al-Hemaid FMA (2014) Direct electrochemistry of glucose oxidase immobilized on ZrO2 nanoparticles-decorated reduced graphene oxide sheets for a glucose biosensor. RSC Adv 4(57):30358–30367
CAS
Article
Google Scholar
Leng J, Wang W-M, Lu L-M, Bai L, Qiu X-L (2014) DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor. Nanoscale Res Lett 9(1):1–8
Article
CAS
Google Scholar
Yu L, Wu H, Wu B, Wang Z, Cao H, Fu C, Jia N (2014) Magnetic Fe3O4-reduced graphene oxide nanocomposites-based electrochemical biosensing. Nano-Micro Lett 6(3):258–267
Article
Google Scholar
Terse-Thakoor T, Komori K, Ramnani P, Lee I, Mulchandani A (2015) Electrochemically functionalized seamless three-dimensional graphene-carbon nanotube hybrid for direct electron transfer of glucose oxidase and bioelectrocatalysis. Langmuir 31(47):13054–13061
CAS
Article
Google Scholar
Devasenathipathy R, Mani V, Chen S-M, Huang S-T, Huang T-T, Lin C-M, Hwa K-Y, Chen T-Y, Chen B-J (2015) Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzym Microb Technol 78:40–45
CAS
Article
Google Scholar
Yu Y, Chen Z, He S, Zhang B, Li X, Yao M (2014) Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosens Bioelectron 52:147–152
CAS
Article
Google Scholar
Eskandari K, Kamali M (2014) The investigation of electrochemical parameter for glucose oxidase on graphene, carbon nanotube and gold nanoparticle. Minerva Biotechnologica 26(3):209–214
Google Scholar
Palanisamy S, Cheemalapati S, Chen S-M (2014) Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite. Mater Sci Eng C Mater Biol Appl 34:207–213
CAS
Article
Google Scholar
Grosse W, Champavert J, Gambhir S, Wallace GG, Moulton SE (2013) Aqueous dispersions of reduced graphene oxide and multi wall carbon nanotubes for enhanced glucose oxidase bioelectrode performance. Carbon 61:467–475
CAS
Article
Google Scholar
Zheng D, Vashist SK, Dykas MM, Saha S, Al-Rubeaan K, Lam E, Luong JHT, Sheu F-S (2013) Materials 6:1011–1027
CAS
Article
Google Scholar
Mani V, Devadas B, Chen S-M (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309–315
CAS
Article
Google Scholar
Chen J-L, Zheng X-L, Miao F-J, Zhang J-N, Cui X-Q, Zheng W-T (2012) Engineering graphene/carbon nanotube hybrid for direct electron transfer of glucose oxidase and glucose biosensor. J Appl Electrochem 42(10):875–881
CAS
Article
Google Scholar
Laborda E, Henstridge MC, Batchelor-McAuley C, Compton RG (2013) Asymmetric Marcus-Hush theory for voltammetry. Chem Soc Rev 42:4894–4905
CAS
Article
Google Scholar
Oldham KB, Myland JC (2011) On the evaluation and analysis of the Marcus-Hush-Chidsey integral. J Electroanal Chem 655(1):65–72
CAS
Article
Google Scholar
Lieber CM, Karas JL, Mayo SL, Albin M, Gray HB (1987) Long range electron transfer in proteins. XXI. Design of enzymes and enzyme models. In: Proceedings of the Robert A. Welch Foundation Conferences on Chemical Research; The Welch Foundation, Houston, pp 9–24.
Heller A (1990) Electrical wiring of redox enzymes. Acc Chem Res 23(5):128–134
Weber K, Creager SE (1994) Voltammetry of redox-active groups irreversibly adsorbed onto electrodes. Treatment using the Marcus relation between rate and overpotential. Anal Chem 66:3164–3172
CAS
Article
Google Scholar
Wei H-Z, Omanovic S (2008) Interaction of flavin adenine dinucleotide (FAD) with a glassy carbon electrode surface. Chem Biodivers 5:1622–1639
Bai P, Bazant MZ (2014) Charge transfer kinetics at the solid–solid interface in porous electrodes. Nat Commun 5:3585
Google Scholar
Hupp JT, Weaver MJ (1984) The driving-force dependence of rate parameters for electron transfer: further comparisons between theory and experiment. J Phys Chem 88:6128–6135
CAS
Article
Google Scholar
Gorton L, Johansson G (1980) Cyclic voltammetry of FAD adsorbed on graphite, glassy carbon, platinum and gold electrodes. J Electrochem Chem 113:151–158
CAS
Article
Google Scholar
McGarvey C, Beck S, Quach S, Birss VL, Elzanowska H (1998) Adsorbed lumiflavin at mercury-electrode surfaces. J Electroanal Chem 456:71–82
CAS
Article
Google Scholar
Heller A (1992) Electrical connection of enzyme redox centers to electrodes. J Phys Chem 96(9):3579–3587
CAS
Article
Google Scholar
Szucs A, Hitchens GD, Bockris JOM (1989) On the adsorption of glucose-oxidase at a gold electrode. J Electrochem Soc 136:3748–3755
CAS
Article
Google Scholar
Benavidez TE, Torrente D, Marucho M, Garcia CD (2014) Adsorption and catalytic activity of glucose oxidase accumulated on OTCE upon the application of external potential. J Colloid Interface Sci 435:164–170
CAS
Article
Google Scholar
Zhang J-D, Chi Q-J, Dong S-J, Wang E (1996) Orientation and electrocatalysis of riboflavin adsorbed on carbon substrate surfaces. J Chem Soc Faraday Trans 92:1913–1920
CAS
Article
Google Scholar
Willner I, Riklin A, Shoham B, Rivenzon D, Katz E (1993) Development of novel enzyme-electrodes: multilayer arrays immobilized onto self-assembled monolayers on electrodes. Adv Mater 5:912–915
CAS
Article
Google Scholar
Gregg BA, Heller A (1990) Cross- linked redox gels containing glucose oxidase for amperometric biosensor applications. Anal Chem 62(3):258–263
CAS
Article
Google Scholar
Heller A, Feldman B (2010) Electrochemistry in diabetes management. Acc Chem Res 43(7):963–973
CAS
Article
Google Scholar
Mano N, Mao F, Heller A (2004) Electro- oxidation of glucose at an increased current density at a reducing potential. Chem Commun 18:2116–2117
Article
CAS
Google Scholar
Pishko MV, Michael AC, Heller A (1991) Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels. Anal Chem 63(20):2268–2272
CAS
Article
Google Scholar
Csoeregi E, Schmidtke DW, Heller A (1995) Design and optimization of a selective subcutaneously implantable glucose electrode based on ‘wired’ glucose oxidase. Anal Chem 67(7):1240–1244
CAS
Article
Google Scholar
Heller A (1991) Electrical wiring of redox enzymes. In: Pelizzetti E, Schiavello M (eds) Photochemical conversion and storage of solar energy. Springer, pp 67–87
Gooding JJ, Lai LMH, Goon IY (2009) Nanostructured electrodes with unique properties for biological and other applications. In: Alkire RC, Kolb DM, Lipkowski J, Ross PN (eds) Chemically Modified Electrodes. Advances in Electrochemical Science and Engineering, vol. 11. Wiley-VCH, Weinheim, pp 1–56
Salimi A, Sharifi E, Noorbakhsh A, Saied Soltanian S (2007) Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Biosens Bioelectron 22:3146–3153
CAS
Article
Google Scholar
Badia A, Carlini R, Fernandez A, Battaglini F, Mikkelsen SR, English AM (1993) Intramolecular electron-transfer rates in ferrocene-derivatized glucose oxidase. J Am Chem Soc 115:7053–7060
CAS
Article
Google Scholar
Sharma V, Kumar V, Archana G, Kumar GN (2005) Substrate specificity of glucose dehydrogenase (GDH) of Enterobacter asburiae PSI3 and rock phosphate solubilization with GDH substrates as C sources. Can J Microbiol 51(6):477–482
CAS
Article
Google Scholar
U.S. Food and Drug Administration (2011) FDA public health notification: potentially fatal errors with GDH-PQQ glucose monitoring technology. http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/PublicHealthNotifications/ucm176992.htm. Accessed 27 May 2011
Hamamatsu N, Suzumura A, Nomiya Y, Sato M, Aita T, Nakajima M, Husimi Y, Shibanaka Y (2006) Modified substrate specificity of pyrroloquinoline quinone glucose dehydrogenase by biased mutation assembling with optimized amino acid substitution. Appl Microbiol Biotechnol 73(3):607–617
CAS
Article
Google Scholar
Igarashi S, Sode K (2003) Stabilization of quaternary structure of watersoluble quinoprotein glucose dehydrogenase. Mol Biotechnol 24(2):97–104
CAS
Article
Google Scholar
Halamkova L, Halamek J, Bocharova V, Szczupak A, Alfonta L, Evgeny E (2012) Implanted biofuel cell operating in a living snail. J Am Chem Soc 134:5040–5043
CAS
Article
Google Scholar
Koushanpour A, Guz N, Gamella M, Katz E (2016) Biofuel cell based on carbon fiber electrodes functionalized with graphene nanosheets. ECS J Solid State Sci Technol 5(8):2162–8769
Google Scholar
Yamaoka H, Yamashita Y, Ferri S, Sode K (2008) Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia. Biotechnol Lett 30(11):1967–1972
CAS
Article
Google Scholar
Janssen W, Harff G, Caers M, Schellekens A (1998) Positive interference of icodextrin metabolites in some enzymatic glucose methods. Clin Chem 44(11):2379–2380
CAS
Google Scholar
Gooding JJ, Wibowo R, Liu J-Q, Yang W-R, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125:9006–9007
CAS
Article
Google Scholar
Migliore A, Nitzan A (2011) Nonlinear charge transport in redox molecular junctions: a Marcus perspective. ACS Nano 5(8):6669–6685
CAS
Article
Google Scholar
Migliore A, Nitzan A (2012) On the evaluation of the Marcus-Hush-Chidsey integral. J Electroanal Chem 671:99–101
CAS
Article
Google Scholar
Zeng Z, Smith R, Bai P, Bazant M (2014) Simple formula for Marcus-Hush-Chidsey kinetics. J Electroanal Chem 735:77–83
CAS
Article
Google Scholar
Male KB, Hrapovic S, Santini JM, Luong JHT (2007) Biosensor for arsenite using arsenite oxidase and multiwalled carbon nanotube modified electrodes. Anal Chem 79(20):7831–7837
CAS
Article
Google Scholar
Rochette JF, Sacher E, Meunier M, Luong JHT (2005) A mediatorless biosensor for putrescine using multiwalled carbon nanotubes. Anal Biochem 336(2):305–311
CAS
Article
Google Scholar
Luz RAS, Pereira AR, de Souza JCP, Sales FCPF, Crespilho FN (2014) Enzyme biofuel cells: thermodynamics, kinetics and challenges in applicability. ChemElectroChem 1(1):1–18
Article
Google Scholar
Vashist SK, Luong JHT (2015) Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon 84:519–550
CAS
Article
Google Scholar
Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu F-S (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29(2):169–188
CAS
Article
Google Scholar
Eckermann AL, Feld DJ, Shaw JA, Meade TJ (2010) Electrochemistry of redox-active self-assembled monolayers. Coord Chem Rev 254:1769–1802
CAS
Article
Google Scholar
Leger C, Bertrand P (2008) Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem Rev 108:2379–2438
CAS
Article
Google Scholar
Roth JP, Klinman JP (2003) Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase. Proc Natl Acad Sci 100(1):62–67
CAS
Article
Google Scholar
Brinkley DW, Roth JP (2005) Determination of a large reorganization energy barrier for hydride abstraction by glucose oxidase. J Am Chem Soc 127:15720–15721
CAS
Article
Google Scholar