Skip to main content
Log in

Determination of the activity of superoxide dismutase using a glassy carbon electrode modified with ferrocene imidazolium salts and hydroxy-functionalized graphene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode was modified with a composite consisting of ferrocene imidazolium salts and hydroxy-functionalized graphene in a Nafion matrix. The electrode is shown to facilitate the reduction of oxygen to form the superoxide anion radical. Atomic force microscopy and electrochemical impedance spectroscopy were used to characterize the electrode. The in-situ production of superoxide anion was then studied with an analogue of methyl-Cypridina luciferin (also referred to as Vargulin). As a result, an electrochemiluminescence (ECL) based assay was developed for the improved determination of the activity of the enzyme superoxide dismutase (SOD). Under optimized conditions, the ECL based calibration plot is linear in the 0.5 to 6.5 U·mL−1 SOD activity range, with a 0.2 U·mL−1 detection limit (at a signal-to-noise ratio of 3).

Schematic of the detection scheme. The surface of a glassy carbon electrode is modified with a modified ferrocenyl-methyl-imidazolium ionic liquid and hydroxy-functionalized graphene. The release of superoxide radical is detected via the electrochemiluminescence of MCLA (a methyl cypridina luciferin analogue)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi:10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. Ratinac KR, Yang WR, Gooding JJ, Thordarson P, Braet F (2011) Graphene and related materials in electrochemical sensing. Electroanal 23:803–826. doi:10.1002/elan.201000545

    Article  CAS  Google Scholar 

  3. Pei S, Zhao J, Du J, Ren W, Cheng HM (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48:4466–4474. doi:10.1016/j.carbon.2010.08.006

    Article  CAS  Google Scholar 

  4. Yusoff N, Pandikumar A, Marlinda AR, Huang NM, Lim HN (2015) Facile synthesis of nanosized graphene/Nafion hybrid materials and their application in electrochemical sensing of nitric oxide. Anal Methods 7:3537–3544. doi:10.1039/C5AY00604J

    Article  CAS  Google Scholar 

  5. Marlinda AR, Pandikumar A, Yusoff N, Huang NM, Lim HN (2015) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182:1113. doi:10.1007/s00604-014-1436-x

    Article  CAS  Google Scholar 

  6. Zeng JX, Wei WZ, Wu L, Liu XY, Liu K, Li Y (2006) Fabrication of poly(toluidine blue O)/carbon nanotube composite nanowires and its stable low-potential detection of NADH. J Electroanal Chem 595:152–160. doi:10.1016/j.jelechem.2006.07.014

    Article  CAS  Google Scholar 

  7. Sun W, Wang Y, Zhang Y, Ju X, Li G, Sun Z (2012) Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. Anal Chim Acta 751:59–65. doi:10.1016/j.aca.2012.09.006

    Article  CAS  Google Scholar 

  8. Dong Y, Wu H, Shang P, Chi Y (2015) Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low potential electrochemiluminescence immunosensor. Nanoscale 7:16366–16371. doi:10.1039/C5NR04328J

    Article  CAS  Google Scholar 

  9. Cristarella TC, Chinderle AJ, Hui J, Rodríguez-Lopez J (2015) Single-layer graphene as a stable and transparent electrode for nonaqueous radical annihilation electrogenerated chemiluminescence. Langmuir 31(13):3999–4007. doi:10.1021/la5050317

    Article  CAS  Google Scholar 

  10. Hosseini M, Mirzanasiri N, Rezapour M, Sheikhha MH, Faridbod F, Norouzi P, Ganjali MR (2015) Sensitive determination of carbidopa through the electrochemiluminescence of luminol at graphene-modified electrodes. Luminescence 30(4):376–381. doi:10.1002/bio.2742

    Article  CAS  Google Scholar 

  11. Liu YM, Shi GF, Zhang JJ et al (2014) A novel label-free electrochemiluminescence aptasensor based on layered flowerlike molybdenum sulfide-graphene nanocomposites as matrix. Colloids Surf B Biointerfaces 122:287–293. doi:10.1016/j.colsurfb.2014.07.011

    Article  CAS  Google Scholar 

  12. Fattman CL, Enghild JJ, Crapo JD, Schaefer LM, Valnickova Z, Oury TD (2000) Purification and characterization of extracellular superoxide dismutase in mouse lung. Biochem Biophys Res Commun 275:542–548. doi:10.1006/bbrc.2000.3327

    Article  CAS  Google Scholar 

  13. Haddad NIA, Yuan Q (2005) Purification and some properties of Cu, Zn superoxide dismutase from radix lethospermi seed, kind of chinese traditional medicine. J Chromatogr B 818:123–131. doi:10.1016/j.jchromb.2004.12.010

    Article  CAS  Google Scholar 

  14. Oztürk-Urek R, Tarhan L (2001) Purification and characterization of superoxide dismutase from chicken liver. Comp Biochem Physiol B Biochem Mol Biol 128:205–212. doi:10.1016/S1096-4959(00)00300-6

    Article  Google Scholar 

  15. Chen Z, Wang J, Lin Z, Chen G (2006) Electrogenerated chemiluminescent behavior of MCLA at an indium-tin-oxide electrode. Electrochim Acta 51:5864–5869. doi:10.1016/j.electacta.2006.03.022

    Article  CAS  Google Scholar 

  16. Hummers J, Offeman WS (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. doi:10.1021/ja01539a017

    Article  CAS  Google Scholar 

  17. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73. doi:10.1038/ncomms1067

    Article  Google Scholar 

  18. Biniak S, Szymanski G, Siedlewski J, Swiatkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35:1799–1810. doi:10.1016/S0008-6223(97)00096-1

    Article  CAS  Google Scholar 

  19. Si Y, Samulski T (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682. doi:10.1021/nl080604h

    Article  CAS  Google Scholar 

  20. Zeng F, Sun Z, Sang X, Diamond D, Lau KT, Liu X, Su DS (2011) In situ one-step electrochemical preparation of graphene oxide nanosheet-modified electrodes for biosensors. ChemSusChem 4:1587–1591. doi:10.1002/cssc.201100319

    Article  CAS  Google Scholar 

  21. Ghaderi N, Peressi M (2010) First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide. J Phys Chem C 114:21625–21630. doi:10.1021/jp108688m

    Article  CAS  Google Scholar 

  22. Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857. doi:10.1021/ja800745y

    Article  CAS  Google Scholar 

  23. Yang H, Jiang J, Zhou W, Lai L, Xi L, Lam Y, Shen Z, Khezri B, Yu T (2011) Influences of graphene oxide support on the electrochemical performances of graphene oxide-MnO2 nanocomposites. Nanoscale Res Lett 6:531. doi:10.1186/1556-276X-6-531

    Article  Google Scholar 

  24. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of grapheme nanosheets. Nat Nanotechnol 3:101–105. doi:10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  25. Abuelteen KH, Abdeljalil RJ, Hamad MA, Ghaleb M, Khan KM, Voelter W (2008) Fungicidal effects of some derivatives of 2-ferrocenyl-benzimidazoles: a possible template for antifungal drug design. J Med Sci 8:673. doi:10.3923/jms.2008.673.681

    Article  CAS  Google Scholar 

  26. Snegur LV, Nekrasov YS, Sergeeva NS, Zhilina ZV, Gurnenyuk VV, Starikova ZA, Simenel AA, Morozova NB, Sviridova IK, Babin VN (2008) Ferrocenylalkyl azoles: bioactivity, synthesis, structure. Appl Organomet Chem 22:139–147. doi:10.1002/aoc.1362

    Article  CAS  Google Scholar 

  27. Akpinar H, Balan A, Baran D, Unver EK, Toppare L (2010) Donor–acceptor–donor type conjugated polymers for electrochromic applications: benzimidazole as the acceptor unit. Polymer 51:6123–6131. doi:10.1016/j.polymer.2010.10.045

    Article  CAS  Google Scholar 

  28. Dashtestani F, Ghourchian H, Eskandari K, Rafiee-Pour HA (2014) A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Microchim Acta 182:1045–1053. doi:10.1007/s00604-014-1424-1

    Article  Google Scholar 

  29. Lvovich V, Scheeline A (1997) Amperometric sensors for simultaneous superoxide and hydrogen peroxide detection. Anal Chem 69:454–462. doi:10.1021/ac9606261

    Article  CAS  Google Scholar 

  30. Mesaros S, Vankova Z, Grunfeld S, Mesarosova A, Malinski T (1998) Preparation and optimization of superoxide microbiosensor. Anal Chim Acta 358:27–33. doi:10.1016/S0003-2670(97)00589-8

    Article  CAS  Google Scholar 

  31. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8

    Article  CAS  Google Scholar 

  32. Corbisier P, Houbion A, Remacle J (1987) A new technique for highly sensitive detection of superoxide dismutase activity by chemiluminescence. Anal Biochem 164:240–247. doi:10.1016/0003-2697(87)90392-7

    Article  CAS  Google Scholar 

  33. Lissi E, Pascual C, Castillo MD (1994) On the use of the quenching of luminol luminescence to evaluate sod activity. Free Radic Biol Med 16:833–837. doi:10.1016/0891-5849(94)90200-3

    Article  CAS  Google Scholar 

  34. Zhidkova TV, Proskurnina EV, Parfenov EA, Vladimirov YA (2011) Determination of superoxide dismutase and SOD-mimetic activities by a chemical system:Co2/H2O2/lucigenin. Anal Bioanal Chem 401:381. doi:10.1007/s00216-011-5070-8

    Article  CAS  Google Scholar 

  35. Rose AL, Moffett JW, Waite TD (2008) Determination of superoxide in seawater using 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3(7H)-one chemiluminescence. Anal Chem 80:1215–1227. doi:10.1021/ac7018975

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Scientific and Technological Foundation of Fujian Province of China (2011 J01043), Education Ministry of Fujian Province of China (JA15057) and Fuzhou University (2014-XQ-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wang or Yaofeng Yuan.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Jiang, Z., Xie, L. et al. Determination of the activity of superoxide dismutase using a glassy carbon electrode modified with ferrocene imidazolium salts and hydroxy-functionalized graphene. Microchim Acta 184, 289–296 (2017). https://doi.org/10.1007/s00604-016-2018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2018-x

Keywords

Navigation