Skip to main content
Log in

Differential pulse voltammetric assay for the carcinoembryonic antigen using a glassy carbon electrode modified with layered molybdenum selenide, graphene, and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A highly sensitive electrochemical aptasensor is described for the determination of carcinoembryonic antigen (CEA). It is based on the use of a hybrid material composed of molybdenum selenide, graphene, and gold nanoparticles (AuNPs). The MoSe2-graphene hybrid was prepared by a hydrothermal method and used as the supporting substrate. It was placed on the surface of a glassy carbon electrode onto which the AuNPs were electrochemically deposited. Thiol-labeled aptamer against CEA was immobilized on the electrode via gold-thiol binding. The use of AuNPs coupled to the MoSe2-graphene hybrid allows for a large loading with aptamers. Under optimum conditions and at a working potential of 0.21 V (vs. SCE), the assay has a linear calibration plot in the 0.1 pg mL−1 to 100 ng mL−1 CEA concentration range, with a detection limit of 0.03 pg mL−1.

Schematic of an electrochemical aptasensor for determination of carcinoembryonic antigen using a glassy carbon electrode modified with layered molybdenum selenide, graphene, and gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang KJ, Niu DJ, Xie WZ, Wang W (2010) A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes–chitosans nanocomposite film modified glassy carbon electrode. Anal Chim Acta 659:102–108

    Article  CAS  Google Scholar 

  2. Sun XC, Lei C, Guo L, Zhou Y (2016) Giant magneto-resistance based immunoassay for the tumor marker carcinoembryonic antigen. Microchim Acta 183:1107–1114

    Article  CAS  Google Scholar 

  3. Xu TS, Li XY, Xie ZH, Li XG, Zhang HY (2015) Poly (o-phenylenediamine) nanosphere-conjugated capture antibody immobilized on a glassy carbon electrode for electrochemical immunoassay of carcinoembryonic antigen. Microchim Acta 182:2541–2549

    Article  CAS  Google Scholar 

  4. Zhang Y, Lu F, Yan Z, Wu D, Ma H, Du B, Wei Q (2015) Electrochemiluminescence immunosensing strategy based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: application to the determination of carcinoembryonic antigen. Microchim Acta 182:1421–1429

    Article  CAS  Google Scholar 

  5. Wu ZJ, Li H, Liu ZH (2015) An aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Sensors Actuators B Chem 206:531–537

    Article  CAS  Google Scholar 

  6. Lin J, Zhang H, Niu S (2015) Simultaneous determination of carcinoembryonic antigen and α-fetoprotein using an ITO immunoelectrode modified with gold nanoparticles and mesoporous silica. Microchim Acta 182:719–726

    Article  CAS  Google Scholar 

  7. Quan H, Zuo CH, Li T, Liu YT, Li MY, Zhong M, Zhang YY, Qi HZ, Yang MH (2015) Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim Acta 176:893–897

    Article  CAS  Google Scholar 

  8. Shu HW, Wen W, Xiong HY, Zhang XH, Wang SF (2013) Novel electrochemical aptamer biosensor based on gold nanoparticles signal amplification for the detection of carcinoembryonic antigen. Electrochem Commun 37:15–19

    Article  CAS  Google Scholar 

  9. Wen W, Huang JY, Bao T, Zhou J, Xia HX, Zhang XH, Wang SF, Zhao YD (2016) Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen. Biosens Bioelectron 83:142–148

    Article  CAS  Google Scholar 

  10. Huang KJ, Liu YJ, Zhang JZ, Cao JT, Liu YM (2015) Aptamer/Au nanoparticles/cobalt sulfide nanosheets biosensor for 17 β -estradiol detection using a guanine-rich complementary DNA sequence for signal amplification. Biosens Bioelectron 67:184–191

    Article  CAS  Google Scholar 

  11. Lu ZS, Chen XJ, Wang Y, Zheng XT, Li CM (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182:571–578

    Article  CAS  Google Scholar 

  12. Fang LX, Huang KJ, Liu Y (2015) Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nano-particles for signal amplification. Biosens Bioelectron 71:171–178

    Article  CAS  Google Scholar 

  13. Wang HY, Song ZY, Zhang HS, Chen SP (2016) Single-molecule analysis of lead(II)-binding aptamer conformational changes in an α-hemolysin nanopore, and sensitive detection of lead(II). Microchim Acta 183:1003–1010

    Article  CAS  Google Scholar 

  14. Ocaña C, Lukic S, Valle MD (2015) Aptamer-antibody sandwich assay for cytochrome c employing an MWCNT platform and electrochemical impedance. Microchim Acta 182:2045–2053

    Article  Google Scholar 

  15. Xu YQ, Hun X, Liu F, Wen XL, Luo XL (2015) Aptamer biosensor for dopamine based on a gold electrode modified with carbon nanoparticles and thionine labeled gold nanoparticles as probe. Microchim Acta 182:1797–1802

    Article  CAS  Google Scholar 

  16. Gan T, Shi ZX, Deng YP, Sun JY, Wang HB (2014) Morphology-dependent electrochemical sensing properties of manganese dioxide-graphene oxide hybrid for guaiacol and vanillin. Electrochim Acta 147:157–166

    Article  CAS  Google Scholar 

  17. Huang KJ, Shuai HL, Zhang JZ (2016) Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide–graphene composites and exonuclease III assisted signal amplification. Biosens Bioelectron 77:69–75

    Article  CAS  Google Scholar 

  18. Chakrabarti MH, Low CTJ, Brandon NP, Yufit V, Hashim MA, Irfan MF, Akhtar J, Ruiz-Trejo E, Hussain MA (2013) Progress in the electrochemical modification of graphene-based materials and their applications. Electrochim Acta 107:425–440

    Article  CAS  Google Scholar 

  19. Huang KJ, Liu YJ, Wang HB, Wang YY, Liu YM (2014) Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Biosens Bioelectron 55:195–202

    Article  CAS  Google Scholar 

  20. Liu X, Zhang JZ, Huang KJ, Hao P (2016) Net-like molybdenum selenide–acetylene black supported on Ni foam for high-performance supercapacitor electrodes and hydrogen evolution reaction. Chem Eng J 302:437–445

    Article  CAS  Google Scholar 

  21. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  Google Scholar 

  22. Huang KJ, Zhang JZ, Cai JL (2015) Preparation of porous layered molybdenum selenide-graphene composites on Ni foam for high-performance supercapacitor and electrochemical sensing. Electrochim Acta 180:770–777

    Article  CAS  Google Scholar 

  23. Zhang ZA, Yang X, Fu Y, Du K (2015) Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J Power Sources 296:2–9

    Article  CAS  Google Scholar 

  24. Tang H, Dou KP, Kaun CC, Kuang Q, Yang SH (2014) MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. J Mater Chem A 2:360–364

    Article  CAS  Google Scholar 

  25. Xu C, Peng SJ, Tan CL, Ang HX, Tan HT, Zhang H, Yan QY (2014) Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution. J Mater Chem A 2:5597–5601

    Article  CAS  Google Scholar 

  26. Kong DS, Wang HT, Judy JC, Mauro P, Kristie JK, Yao J, Cui Y (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347

    Article  CAS  Google Scholar 

  27. Gan T, Hu CG, Sun Z, Hu SS (2013) Facile synthesis of water-soluble fullerene-graphene oxide composites for electrodeposition of phosphotungstic acid-based electrocatalysts. Electrochim Acta 111:738–745

    Article  CAS  Google Scholar 

  28. Cao XY (2014) Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Microchim Acta 181:1133–1141

    Article  CAS  Google Scholar 

  29. Guo J, Chen X, Yi YJ, Li WZ, Liang CH (2014) Layer-controlled synthesis of graphene-like MoS2 from single source organometallic precursor for Li-ion batteries. RSC Adv 4:16716–16720

    Article  CAS  Google Scholar 

  30. Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408

    Article  CAS  Google Scholar 

  31. Kong FY, Xu MT, Xu JJ, Chen HY (2011) A novel lable-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles–thionine–reduced graphene oxide nanocomposite film modified glassy carbon electrode. Talanta 85:2620–2625

    Article  CAS  Google Scholar 

  32. Xb S, Ma ZF (2013) Electrochemical immunosensor based on nanoporpus gold loading thionine for carcinoembryonic antigen. Anal Chim Acta 780:95–100

    Article  Google Scholar 

  33. Han J, Zhuo Y, Chai YQ, Mao L, Yuan YL, Yuan R (2011) Highly conducting gold nanoparticles–graphene nanohybrid films for ultrasensitive detection of carcinoembryonic antigen. Talanta 85:130–135

    Article  CAS  Google Scholar 

  34. Ma L, Zhou XP, Xu LM, Xu XY, Zhang LL, Chen WX (2015) Ultrathin few-layered molybdenum selenide/graphene hybrid with superior electrochemical Li-storage performance. J Power Sources 285:274–280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61301037), Youth Backbone Teacher Training Program of Henan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoshan He.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 1316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B. Differential pulse voltammetric assay for the carcinoembryonic antigen using a glassy carbon electrode modified with layered molybdenum selenide, graphene, and gold nanoparticles. Microchim Acta 184, 229–235 (2017). https://doi.org/10.1007/s00604-016-2006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2006-1

Keywords

Navigation