Skip to main content
Log in

Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly(o-aminophenol) and graphene quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A strategy was developed for the voltammetric determination of the antibiotic drug levofloxacin (LV) based on a glassy carbon electrode modified with a composite consisting of poly(o-aminophenol) and graphene quantum dots (PoAP/GQD) that was fabricated by electropolymerization. The PoAP/GQD composite provides a large surface area and sensing interface and strongly promotes the oxidation current of LV. Under optimal conditions, the modified GCE displays an oxidation peak current (best measured at a working voltage of 1.05 V vs. SCE) that is linearly related to the levofloxacin concentration in the range from 0.05 to 100 μM, and the detection limit is 10 nM (at an S/N of 3). The method was applied to the determination of levofloxacin in spiked milk samples where is gave recoveries between 96.0 and 101.0 %.

We describe a one-step electrochemical polymerization method to synthesize a layer of conductive film of poly(o-aminophenol) and graphene quantum dots (PoAP/GQD) onto a glassy carbon electrode (GCE) surface. The composite film exhibited high electro catalytic activity for the quantitative determination of levofloxacin by stripping voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Santoro MIRM, Kassab NM, Singh AK, Kedor-Hackmam ERM (2006) Quantitative determination of gatifloxacin, levofloxacin, lomefloxacin and pefloxacin fluoroquinolonic antibiotics in pharmaceutical preparations by high-performance liquid chromatography. J Pharm Biomed Anal 40(1):179–184

    Article  CAS  Google Scholar 

  2. Murillo Pulgarín JA, Alañón Molina A, Muñoz Fernández L (2008) Determination of ciprofloxacin, the major metabolite of enrofloxacin, in milk by isopotential fluorimetry. J Agric Food Chem 56(19):8838–8843

    Article  Google Scholar 

  3. Tang L, Tong Y, Zheng RF, Liu WL, Gu Y, Li C, Chen RX, Zhang ZQ (2014) Ag nanoparticles and electrospun CeO2-Au composite nanofibers modified glassy carbon electrode for determination of levofloxacin. Sensors Actuators B Chem 203:95–101

    Article  CAS  Google Scholar 

  4. Huet AC, Charlier C, Tittlemier SA, Singh G, Benrejeb S, Delahaut P (2006) Simultaneous determination of (fluoro)quinolone antibiotics in kidney, marine products, eggs, and muscle by enzyme-linked immunosorbent assay (ELISA). J Agric Food Chem 54(8):2822–2827

    Article  CAS  Google Scholar 

  5. Lecordier J, Lahet JJ, Courderot-Masuyer C, Beaudoin E, Chaillot B (2008) Determination of acid base balance and oil water partition coefficient of an atopy patch test of levofloxacin. Biomed Pharmacother 62(2):136–138

    Article  CAS  Google Scholar 

  6. Mazzotta E, Malitesta C, Díaz-Álvarez M, Martin-Esteban A (2012) Electrosynthesis of molecularly imprinted polypyrrole for the antibiotic levofloxacin. Thin Solid Films 520(6):1938–1943

    Article  CAS  Google Scholar 

  7. Tang LH, Wang Y, Li YM, Feng HB, Lu J, Li JH (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19(17):2782–2789

    Article  CAS  Google Scholar 

  8. Wen W, Zhao DM, Zhang XH, Xiong HY, Wang SF, Chen W, Zhao YD (2012) One-step fabrication of poly(o-aminophenol)/multi-walled carbon nanotubes composite film modified electrode and its application for levofloxacin determination in pharmaceuticals. Sensors Actuators B Chem 174:202–209

    Article  CAS  Google Scholar 

  9. Liu Y, Liu Y, Feng HB, Wu YM, Joshi L, Zeng XQ, Li JH (2012) Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens Bioelectron 35(1):63–68

    Article  CAS  Google Scholar 

  10. Li J, Hong X, Li D, Zhao K, Wang L, Wang HZ, Du ZL, Li JH, Bai YB, Li TJ (2004) Mixed ligand system of cysteine and thioglycolic acid assisting in the synthesis of highly luminescent water-soluble CdTe nanorods. Chem Commun 15:1740–1741

    Article  Google Scholar 

  11. Zuo PL, Gao JF, Peng J, Liu JH, Zhao MM, Zhao JH, Zuo PJ, He H (2016) A sol–gel based molecular imprint incorporating carbon dots for fluorometric determination of nicotinic acid. Microchim Acta 183(1):329–336

    Article  CAS  Google Scholar 

  12. Hao TF, Wei X, Nie YJ, Xu YQ, Yan YS, Zhou ZP (2016) An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta 183(7):2197–2203

    Article  CAS  Google Scholar 

  13. Wu LD, Zhang Y, Wang YH, Ge SG, Liu HY, Yan M, Yu JH (2016) A paper-based electrochemiluminescence electrode as an aptamer-based cytosensor using PtNi@carbon dots as nanolabels for detection of cancer cells and for in-situ screening of anticancer drugs. Microchim Acta 183(6):1873–1880

    Article  CAS  Google Scholar 

  14. Wang B, Chen YF, Wu YY, Weng B, Liu YS, Li CM (2016) Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta 183(9):2491–2500

    Article  CAS  Google Scholar 

  15. Zhang P, Zhuo Y, Chang YY, Yuan R, Chai YQ (2015) Electrochemiluminescent graphene quantum dots as a sensing platform: a dual amplification for MicroRNA assay. Anal Chem 87(20):10385–10391

    Article  CAS  Google Scholar 

  16. Bai JM, Zhang L, Liang RP, Qiu JD (2013) Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing. Chem Eur J 19(12):3822–3826

    Article  CAS  Google Scholar 

  17. Wang Y, Lu J, Tang LH, Chang HX, Li JH (2009) Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal Chem 81(23):9710–9715

    Article  CAS  Google Scholar 

  18. Guo Y, Yang LL, Li WW, Wang XF, Shang YH, Li BX (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta 183(4):1409–1416

    Article  CAS  Google Scholar 

  19. Shinde DB, Pillai VK (2013) Electrochemical resolution of multiple redox events for graphene quantum dots. Angew Chem Int Ed 52(9):2482–2485

    Article  CAS  Google Scholar 

  20. Zuo PL, Lu XH, Sun ZG, Guo YH, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542

    Article  CAS  Google Scholar 

  21. Zhao HM, Chang YY, Liu M, Gao S, Yu HT, Quan X (2013) A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots. Chem Commun 49(3):234–236

    Article  CAS  Google Scholar 

  22. Wang Y, Tang L, Li Z, Lin Y, Li JH (2014) In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells. Nat Protoc 9(8):1944–1955

    Article  CAS  Google Scholar 

  23. Chen D, Feng HB, Li JH (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    Article  CAS  Google Scholar 

  24. Wang FX, Hao QL, Zhang YH, Xu YJ, Lei W (2016) Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim Acta 183(1):273–279

    Article  Google Scholar 

  25. Li LL, Wu GH, Yang GH, Peng J, Zhao JW, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5(10):4015–4039

    Article  CAS  Google Scholar 

  26. Chen S, Hai X, Chen XW, Wang JH (2014) In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal Chem 86(13):6689–6694

    Article  CAS  Google Scholar 

  27. Dong YQ, Li GL, Zhou NN, Wang RX, Chi YW, Chen GN (2012) Graphene quantum Dot as a green and facile sensor for free chlorine in drinking water. Anal Chem 84(19):8378–8382

    Article  CAS  Google Scholar 

  28. Tetsuka H, Nagoya A, Asahi R (2015) Highly luminescent flexible amino-functionalized graphene quantum dots@cellulose nanofiber-clay hybrids for white-light emitting diodes. J Mater Chem C 3(15):3536–3541

    Article  CAS  Google Scholar 

  29. Qu F, Sun Z, Liu DY, Zhao XN, You JM (2016) Direct and indirect fluorescent detection of tetracyclines using dually emitting carbon dots. Microchim Acta 183(9):2547–2553

    Article  CAS  Google Scholar 

  30. Sun HJ, Gao N, Dong K, Ren JS, Qu XG (2014) Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8(6):6202–6210

    Article  CAS  Google Scholar 

  31. Ojani R, Raoof J-B, Fathi S (2009) Poly(o-aminophenol) film prepared in the presence of sodium dodecyl sulfate: application for nickel ion dispersion and the electrocatalytic oxidation of methanol and ethylene glycol. Electrochim Acta 54(8):2190–2196

    Article  CAS  Google Scholar 

  32. Zhang XL, Sun RN, Yang XD (2015) Determination of ropivacaine hydrochloride with graphene quantum dots - molecularly imprinted polymer electrochemical sensor. J Instrum Anal 34(2):159–163

    CAS  Google Scholar 

  33. Zhang YY, Zhang C, Zhang D, Ma M, Wang WZ, Chen Q (2016) Nano-assemblies consisting of Pd/Pt nanodendrites and poly (diallyldimethylammonium chloride)-coated reduced graphene oxide on glassy carbon electrode for hydrogen peroxide sensors. Mater Sci Eng C 58:1246–1254

    Article  CAS  Google Scholar 

  34. Li Y, Yuan R, Chai YQ, Song ZJ (2011) Electrodeposition of gold–platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker. Electrochim Acta 56(19):6715–6721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21405035, 21475032), the Natural Science Fund for Creative Research Groups of Hubei Province of China (No. 2014CFA015), the Open Project Program of State Key Laboratory of Chemo/Biosensing and Chemometrics (No. Z2015021), and the Hubei Key Laboratory of Pollutant Analysis & Reuse Technology (No. KL2013M09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wen.

Ethics declarations

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JY., Bao, T., Hu, TX. et al. Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly(o-aminophenol) and graphene quantum dots. Microchim Acta 184, 127–135 (2017). https://doi.org/10.1007/s00604-016-1982-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1982-5

Keywords

Navigation