Skip to main content
Log in

Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a composite consisting of chitosan‐encapsulated graphite and platinum nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a non-enzymatic hydrogen peroxide (H2O2) sensor which makes use of a nanocomposite consisting of platinum nanoparticles (PtNPs) and chitosan-encapsulated graphite (graphite-CS). The composite was prepared by sonication of pristine graphite in chitosan (CS) in 5 % acetic acid. The PtNP decorated graphite-CS (graphite-CS/PtNPs) composite was prepared by electrodeposition of PtNPs on the graphite-CS modified glassy carbon electrode. The graphite-CS/PtNP composite was characterized by scanning electron microscopy, elemental analysis and FTIR spectroscopy. The modified electrode displays an enhanced reduction peak current for H2O2 when compared with electrodes modified with graphite/PtNPs and PtNPs. The modified electrode exhibits excellent electrocatalytic activity towards the reduction of H2O2, and the amperometric response is linear over the concentration range from 0.25 to 2890 μM. The sensitivity and the detection limit are 0.465 μA⋅μM‾1 ⋅ cm‾2 and 66 nM, respectively. The sensor shows fast response (3 s) in detecting H2O2. It is also highly selective in the presence of potentially interfering compounds, and may therefore be used as a feasible platform for sensing H2O2 in real samples.

Preparation of graphite-CS/PtNP composite, and its application to electrochemical reduction of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yao SJ, Xu JH, Wang Y, Chen XX, Xu YX, Hu SS (2006) A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal Chim Acta 557:78–84

    Article  CAS  Google Scholar 

  2. Wolfbeis OS, Dürkop A, Wu M, Lin ZH (2002) A europium-ion-based luminescent sensing probe for hydrogen peroxide. Angew Chem Int Ed 41:4495–4498

    Article  CAS  Google Scholar 

  3. Tsiafoulis CG, Trikalitis PN, Prodromidis MI (2005) Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochem Commun 7:1398–1404

    Article  CAS  Google Scholar 

  4. Chen KJ, Pillai KC, Rick J, Pan CJ, Wang SH, Liu CC, Hwang BJ (2012) Bimetallic PtM (M = Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosens Bioelectron 33:120–127

    Article  CAS  Google Scholar 

  5. Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 63:2705–2715

    CAS  Google Scholar 

  6. Matsubara C, Kawamoto N, Takamura K (1992) Oxo[5,10,15, 20-tetra (4-pyridyl)porphyrinato]titanium (IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117:1781–1784

    Article  CAS  Google Scholar 

  7. Aizawa M, Ikariyama Y, Kuno H (1984) Photovoltaic determination of hydrogen peroxide with a biophotodiode. Anal Lett 17:555–564

    Article  CAS  Google Scholar 

  8. Razmi H, Rezaei MM (2010) Non-enzymatic hydrogen peroxide sensor using an electrode modified with iron pentacyanonitrosylferrate nanoparticles. Microchim Acta 171:257–265

    Article  CAS  Google Scholar 

  9. Yan Z, Zhao J, Qin L, Mu F, Wang P, Feng X (2013) Non-enzymatic hydrogen peroxide sensor based on a gold electrode modified with granular cuprous oxide nanowires. Microchim Acta 180:145–150

    Article  CAS  Google Scholar 

  10. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58

    Article  CAS  Google Scholar 

  11. Palanisamy S, Cheemalapati S, Chen SM (2012) Highly sensitive and selective hydrogen peroxide biosensor based on hemoglobin immobilized at multiwalled carbon nanotubes–zinc oxide composite electrode. Anal Biochem 429:108–115

    Article  CAS  Google Scholar 

  12. Noor AM, Shahid MM, Rameshkumar P, Huang NM (2016) A glassy carbon electrode modified with graphene oxide and silver nanoparticles for amperometric determination of hydrogen peroxide. Microchim Acta 183:911–916

    Article  CAS  Google Scholar 

  13. Wang J, Musameh M, Lin YH (2003) Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408–2409

    Article  CAS  Google Scholar 

  14. Chen XM, Wu GH, Jiang YQ, Wang YR, Chen X (2011) Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst 136:4631–4640

    Article  CAS  Google Scholar 

  15. Zhou P, Dai ZH, Fang M, Huang XH, Bao JC, Gong JF (2007) Novel dendritic palladium nanostructure and its application in biosensing. J Phys Chem C 111:12609–12616

    Article  CAS  Google Scholar 

  16. Yi QF, Niu FJ, Li L, Du RL, Zhou ZH, Liu XP (2011) Novel nanoporous silver particles for electro-reduction of hydrogen peroxide in alkaline media. J Electroanal Chem 654:60–65

    Article  CAS  Google Scholar 

  17. Weng SH, Zheng YJ, Zhao CF, Zhou JZ, Lin LQ, Zheng ZF, Lin XH (2013) CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications. Microchim Acta 180:371–378

    Article  CAS  Google Scholar 

  18. Kong XG, Zhao JW, Han JB, Zhang DY, Wei M, Duan X (2011) Fabrication of naphthol green B/layered double hydroxide nanosheets ultrathin film and its application in electrocatalysis. Electrochim Acta 56:1123–1129

    Article  CAS  Google Scholar 

  19. Palanisamy S, Thangavelu K, Chen SM, Gnanaprakasam P, Velusamy V, Liu XH (2016) Preparation of chitosan grafted graphite composite for sensitive detection of dopamine in biological samples. Carbohydr Polym 151:401–407

    Article  CAS  Google Scholar 

  20. Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32

    Article  CAS  Google Scholar 

  21. Palanisamy S, Lee HF, Chen SM, Thirumalraj B (2015) An electrochemical facile fabrication of platinum nanoparticle decorated reduced graphene oxide; application for enhanced electrochemical sensing of H2O2. RSC Adv 5:105567–105573

    Article  CAS  Google Scholar 

  22. Mei H, Wu W, Yu B, Wu H, Wang S, Xia Q (2016) Nonenzymatic electrochemical sensor based on Fe@Pt core–shell nanoparticles for hydrogen peroxide, glucose and formaldehyde. Sensors Actuators B Chem 223:68–75

    Article  CAS  Google Scholar 

  23. Hu J, Li F, Wang K, Han D, Zhang Q, Yuan J, Niu L (2012) One-step synthesis of graphene–AuNPs by HMTA and the electrocatalytical application for O2 and H2O2. Talanta 93:345–349

    Article  CAS  Google Scholar 

  24. Zhang F, Wang Z, Zhang Y, Zheng Z, Wang C, Du Y, Ye W (2012) Microwave-assisted synthesis of Pt/graphene nanocomposites for nonenzymatic hydrogen peroxide sensor. Int J Electrochem Sci 7:1968–1977

    CAS  Google Scholar 

  25. Jia N, Huang B, Chen L, Tan L, Yao S (2014) A simple non-enzymatic hydrogen peroxide sensor using gold nanoparticles-graphene-chitosan modified electrode. Sensors Actuators B Chem 195:165–170

    Article  CAS  Google Scholar 

  26. Sun Y, He K, Zhang Z, Zhou A, Duan HW (2015) Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene–carbon nanotube hybrid paper electrode. Biosens Bioelectron 68:358–364

    Article  CAS  Google Scholar 

  27. Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968

    Article  CAS  Google Scholar 

  28. Miao Z, Zhang D, Chen Q (2014) Non-enzymatic Hydrogen peroxide sensors based on multi-wall carbon nanotube/Pt nanoparticle nanohybrids. Materials 7:2945–2955

    Article  CAS  Google Scholar 

  29. Yu A, Wang Q, Yong J, Mahon PJ, Malherbe F, Wang F, Zhang H, Wang J (2012) Silver nanoparticle–carbon nanotube hybrid films: Preparation and electrochemical sensing. Electrochim Acta 74:111–116

    Article  CAS  Google Scholar 

  30. Thanh TD, Balamurugan J, Lee SH, Kim NH, Lee JH (2016) Novel porous gold-palladium nanoalloy network-supported graphene as an advanced catalyst for non-enzymatic hydrogen peroxide sensing. Biosens Bioelectron 85:669–678

    Article  CAS  Google Scholar 

  31. Liu Y, Wang D, Xu L, Hou H, You T (2011) A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosens Bioelectron 26:4585–4590

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Ministry of Science and Technology, Taiwan (Republic of China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, TW., Palanisamy, S. & Chen, SM. Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a composite consisting of chitosan‐encapsulated graphite and platinum nanoparticles. Microchim Acta 183, 2861–2869 (2016). https://doi.org/10.1007/s00604-016-1925-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1925-1

Keywords

Navigation